中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
已知雙曲線的離心率為,且過點P().
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A,B,且  
(其中O為原點),求k的取值范圍.

(1)
(2).

解析試題分析:(1)根據,從而得到,所以曲線C的方程可化為,再把點P()的坐標代入此方程即可求出b2的值,從而得到雙曲線C的方程.
(2)設,則由可得,
,所以,因而直l1的方程與雙曲線C的方程聯立消去y得到關于x的一元二次方程,借助韋達定理代入上述不等式即可得到關于k的不等式,再根據二次項系數不為零及對k的要求,最終得到k的取值范圍.
考點:雙曲線的標準方程及雙曲線的幾何性質,直線與雙曲線的位置關系,向量的數量積的坐標表示.
點評:(1)當題目給離心率條件求標準方程時一般要利用(雙曲線時),得到b和a的關系式,然后化簡雙曲線方程,再利用其它條件求方程中的參數即可.
(2)直線與雙曲線相交時,要注意聯立方程得到的一元二次方程的系數不為零,判別式大于零,這是前提條件.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的焦點坐標為,且短軸一頂點B滿足
(Ⅰ) 求橢圓的方程;
(Ⅱ)過的直線l與橢圓交于不同的兩點M、N,則△MN的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于兩點. ①若線段中點的
橫坐標為,求斜率的值;②若點,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)
給定拋物線是拋物線的焦點,過點的直線相交于兩點,為坐標原點.
(Ⅰ)設的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

分別是橢圓+=1()的左、右焦點,是橢圓的上頂點,是直線與橢圓的另一個交點,=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值? 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知拋物線過點.(1)求拋物線的方程,并求其準線方程;
(2)是否存在平行于為坐標原點)的直線,使得直線與拋物線有公共點,且直線
距離等于?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時每隔4米需用一支柱支撐,求其中最長的支柱的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分) 已知拋物線與直線相交于兩點.
(1)求證:以為直徑的圓過坐標系的原點;(2)當的面積等于時,求的值.

查看答案和解析>>

同步練習冊答案