中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數在(0,1)上為減函數.
(1)討論f(x)的單調性(指出單調區(qū)間);
(2)當a>0時,如果f(x)在(0,1)上為減函數,g(x)=x2-2alnx在(1,2)上是增函數,求實數a的值;
(3)當a=2時,若內恒成立,求b的取值范圍.
【答案】分析:(1)先求導數得:f′(x)=1-,根據函數在(0,1)上為減函數.得出f′(x)=1-≤0在(0,1)上恒成立,得到a的取值范圍,再利用導數研究函數的單調性得出f(x)的單調區(qū)間;
(2)由(1)得a≥1,又g(x)=x2-2alnx在(1,2)上是增函數,利用導數研究函數的單調性得出a≤1,從而得出a的值;
(3)當a=2時,若內恒成立,再分離出2b:2b≤x+-,設h(x)=x+-,它在(0,1)上是減函數,只須2b小于h(1)即可求出b的取值范圍.
解答:解:(1)∵函數,∴f′(x)=1-
∵函數在(0,1)上為減函數.
∴f′(x)=1-≤0在(0,1)上恒成立,
∴a≥1.
f′(x)=1->0得:x>a2
故f(x)的單調增區(qū)間為:(a2,+∞),減區(qū)間為(0,a2
(2)由(1)得a≥1,
又g(x)=x2-2alnx在(1,2)上是增函數,
∴g′(x)=2x-≥0在(1,2)上恒成立,
⇒a≤x2,⇒a≤1,
∴a=1.
(3)當a=2時,若內恒成立,
即:x2-4lnx≥2bx-
2b≤x+-,設h(x)=x+-,它在(0,1)上是減函數,
∴2b≤h(1)⇒2b≤2,⇒b≤1.
∴b的取值范圍b≤1.
點評:本小題主要考查函數恒成立問題\函數單調性的應用、利用導數研究函數的單調性、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年河南省安陽一中分校高一(上)第一次段考數學試卷(解析版) 題型:解答題

已知函數在區(qū)間[0,1]上的最大值是2,求實數a的值.

查看答案和解析>>

科目:高中數學 來源:2013年安徽省高考數學專項訓練:函數(解析版) 題型:選擇題

已知函數在區(qū)間[0,1]上單調遞增,則實數a的取值范圍是( )
A.a∈[0,1]
B.a∈(-1,0]
C.a∈[-1,1]
D.a∈(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年遼寧省高三上學期第一次模擬考試理科數學試卷(解析版) 題型:解答題

(本題滿分12分)

已知函數在(0,1)上是增函數.(1)求的取值范圍;

(2)設),試求函數的最小值.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省高三10月月考理科數學 題型:解答題

 

(本小題滿分14分)

已知函數在(0,1)內是增函數.

  (1)求實數的取值范圍;

  (2)若,求證:

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年上海市高三上學期期中考試數學卷 題型:填空題

已知函數在區(qū)間[0,1]上的最小值為0,則a的值為         

 

查看答案和解析>>

同步練習冊答案