中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M≥0,都有|f(x)|≤M 成立,則稱f(x)是D上的有界函數,其中M稱為函f(x)的一個上界.
已知函數f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函數g(x)為奇函數,求實數a的值;
(2)在(1)的條件下,求函數g(x),在區間[
5
3
,3]上的所有上界構成的集合;
(3)若函數g(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍.
分析:(1)利用奇函數的定義,建立方程,即可求實數a的值;
(2)求出函數g(x)=log
1
2
1+x
x-1
在區間[
5
3
,3]上的值域為[-2,-1],結合新定義,即可求得結論;
(3)由題意知,|f(x)|≤3在[0,+∞)上恒成立,可得-4•2x-(
1
2
)
x
≤a≤2•2x-(
1
2
)
x
在[0,+∞)上恒成立,換元,求出左邊的最大值,右邊的最小值,即可求實數a的取值范圍.
解答:解:(1)∵函數g(x)為奇函數,
∴g(-x)=-g(x),即log
1
2
1+ax
-x-1
=-log
1
2
1-ax
x-1
.,
1+ax
-x-1
=
x-1
1-ax
,得a=±1,而當a=1時不合題意,故a=-1.…(4分)
(2)由(1)得:g(x)=log
1
2
1+x
x-1

∵函數g(x)=log
1
2
1+x
x-1
在區間(1,+∞)上單調遞增,
∴函數g(x)=log
1
2
1+x
x-1
在區間[
5
3
,3]上單調遞增,
∴函數g(x)=log
1
2
1+x
x-1
在區間[
5
3
,3]上的值域為[-2,-1],
∴|g(x)≤2,
故函數g(x)在區間[
5
3
,3]上的所有上界構成集合為[2,+∞).…(8分)
(3)由題意知,|f(x)|≤3在[0,+∞)上恒成立.
∴-3≤f(x)≤3,
∴-4-(
1
4
)
x
≤a(
1
2
)
x
≤2-(
1
4
)
x

∴-4•2x-(
1
2
)
x
≤a≤2•2x-(
1
2
)
x
在[0,+∞)上恒成立.  …(10分)
設t=2x,t≥1,h(t)=-4t-
1
t
,p(t)=2t-
1
t

則h′(t)=-4+
1
t2
<0,p′(t)=2+
1
t2
>0,
∴h(t)在[1,+∞)上遞減,p(t)在[1,+∞)上遞增,…(12分)
∴h(t)在[1,+∞)上的最大值為h(1)=-5,p(t)在[1,+∞)上的最小值為p(1)=1.
∴實數a的取值范圍為[-5,1].…(14分)
點評:本題考查了與函數性質有關的新定義問題,考查了換元法求函數的值域,綜合性強,涉及知識面廣,難度較大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.
已知函數f(x)=1+a•(
1
2
x+(
1
4
x;g(x)=
1-m•x2
1+m•x2

(Ⅰ)當a=1時,求函數f(x)值域并說明函數f(x)在(-∞,0)上是否為有界函數?
(Ⅱ)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍;
(Ⅲ)已知m>-1,函數g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在D上的函數f(x),如果滿足對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界,已知函數f(x)=1+x+ax2
(1)當a=-1時,求函數f(x)在(-∞,0)上的值域,判斷函數f(x)在(-∞,0)上是否為有界函數,并說明理由;
(2)若函數f(x)在x∈[1,4]上是以3為上界的有界函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數f(x)=1+a•(
1
2
)x+(
1
4
)x
; g(x)=
1-m•x2
1+m•x2

(1)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍;
(2)已知m>-1,函數g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在D上的函數f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數f(x)(x∈D)有一個寬度為d的通道.給出下列函數:①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在區間[1,+∞)上通道寬度可以為1的函數有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

如右圖所示,定義在D上的函數f(x),如果滿足:對?x∈D,常數A,都有f(x)≥A成立,則稱函數f(x)在D上有下界,其中A稱為函數的下界.(提示:圖中的常數A可以是正數,也可以是負數或零)
(1)試判斷函數f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(2)已知某質點的運動方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時刻該質點的瞬時速度是以A=
1
2
為下界的函數,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案