(本小題滿分14分)
已知:有窮數列{an}共有2k項(整數k≥2 ),a1=2 ,設該數列的前n項和為 Sn且滿足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通項公式;
(2)設bn=log2an ,求{bn}的前n項和Tn;
(3)設cn=
,若a=2
,求滿足不等式
+
+…+
+
≥
時k的最小值.
(1)an=2·an-1(n=1,2…,2k);(2)Tn=n+
(a>1,n=1,2,…,2k)(3)k≥6或k≤![]()
【解析】(1)由Sn+1=aSn+2(n=1,2,…,2k-1) (1)
Sn=aSn-1+2(n=2,3,…,k) (2)……………………………2分
(1)-(2)得an+1=a·an(n=2,3,…,2k-1)
由(1)式S2=aS1+2,a1+a2=aS1+2……………………………………………………3分
解得a2=2a,因為![]()
所以{an}是以2為首項,a為公比的等比數列,an=2·an-1(n=1,2…,2k)…………4分
(2)∵bn-bn-1=log2an-log2an-1=log2an-1log2
=log2a (n=2,3…,2k)
∴{bn}是以b1=1為首項,以log2a(a>1)為公差的等差數列………………………6分
∴Tn=
=
=n+
(a>1,n=1,2,…,2k)……………8分
(3)cn=
=1+
=1+
(n=1,2,…,2k)……………………………10分
當cn≤
時, n≤k+
,n為正整數,知n≤k時,cn<![]()
當n≥k+1時,cn>
……………………………………………………………………11分
![]()
=(
-c1)+(
-c2)+…+(
-ck)+(ck+1-
)+…+(c2k-
)
=(ck+1+ck+2+…+c2k)-(c1+c2+…+ck)
=
{[k+(k+1)+…+(2k-1)]+2k}-
{[1+2+…+(k-1)]+k}
=
[
-
]
=
≥![]()
即11k2-72k+36≥0,(11k-6)(k-6)≥0解得k≥6或k≤![]()
所以滿足條件的k的最小值為6…………………………14分
科目:高中數學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列
}是等比數列;
(2)設
,求
及數列{
}的通項公式;
(3)記
,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com