中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知數列{an}是首項為1,公比為
13
的等比數列.
(1)求an的表達式;
(2)如果bn=(2n-1)an,求{bn}的前n項和Sn
分析:(1)利用等比數列的通項公式即可求得an
(2)由(1)表示出bn,利用錯位相減法即可求得Sn
解答:解:(1)∵{an}是首項為1,公比為
1
3
的等比數列,
an=(
1
3
)n-1

(2)由(1)得,bn=(2n-1)an=(2n-1)(
1
3
)n-1

∴Sn=1+3×
1
3
+5×(
1
3
)2
+…+(2n-1)(
1
3
)n-1
①,
1
3
Sn=
1
3
+3×(
1
3
)2
+5×(
1
3
)3+(2n-1)•(
1
3
)n
②,
①-②得,
2
3
Sn
=1+
1
3
+2×(
1
3
)2
+…+2×(
1
3
)n-1
-(2n-1)•(
1
3
)n
=1+2×
1
3
[1-(
1
3
)n-1]
1-
1
3
-(2n-1)•(
1
3
)n
=2-(
1
3
)n-1
-(2n-1)•(
1
3
)n

∴Sn=3-
n+1
3n-1
點評:本題考查等比數列的通項公式、數列求和,錯位相減法對數列求和是高考考查的重點內容,要熟練掌握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}是首項為3,公差為2的等差數列,其前n項和為Sn,數列{bn}為等比數列,且b1=1,bn>0,數列{ban}是公比為64的等比數列.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}是首項a1=
1
4
的等比數列,其前n項和Sn中S3,S4,S2成等差數列,
(1)求數列{an}的通項公式;
(2)設bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求證:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}是首項為1的等差數列,且公差不為零,而等比數列{bn}的前三項分別是a1,a2,a6
(I)求數列{an}的通項公式an
(II)若b1+b2+…bk=85,求正整數k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}是首項為1,公差為2的等差數列,又數列{bn}的前n項和Sn=nan
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)若cn=
1bn(2an+3)
,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}是首項a1=a,公差為2的等差數列,數列{bn}滿足2bn=(n+1)an
(1)若a1、a3、a4成等比數列,求數列{an}的通項公式;
(2)若對任意n∈N*都有bn≥b5成立,求實數a的取值范圍;
(3)數列{cn}滿足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,當a=-20時,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步練習冊答案