在平面直角坐標(biāo)系
中,已知動點
到點
的距離為
,到
軸的距離為
,且
.
(1)求點
的軌跡
的方程;
(2) 若直線
斜率為1且過點
,其與軌跡
交于點
,求
的值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,過
的左焦點
的直線
被圓
截得的弦長為
.
(1)求橢圓
的方程;
(2)設(shè)
的右焦點為
,在圓
上是否存在點
,滿足
,若存在,指出有幾個這樣的點(不必求出點的坐標(biāo));若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)過點
,且橢圓
的離心率為
.
(1)求橢圓
的方程;
(2)若動點
在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.求直線
是否恒過定點,如果是則求出該定點的坐標(biāo),不是請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點P是橢圓C的“準(zhǔn)圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,橢圓上的點到焦點的最小距離為
,離心率
.
(1)求橢圓
的方程;
(2)若直線
交
于
、
兩點,點
,問是否存在
,使
?若存在求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的橢圓C:
的一個焦點為![]()
為橢圓C上一點,△MOF2的面積為
.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點,且以線段AB為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的長軸長為
,離心率為
,
分別為其左右焦點.一動圓過點
,且與直線
相切.
(1)(ⅰ)求橢圓
的方程;(ⅱ)求動圓圓心軌跡
的方程;
(2)在曲線
上有四個不同的點
,滿足
與
共線,
與
共線,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的左、右焦點分別為
,其上頂點為
已知
是邊長為
的正三角形.![]()
(1)求橢圓
的方程;
(2)過點
任作一動直線
交橢圓
于
兩點,記
.若在線段
上取一點
,使得
,當(dāng)直線
運動時,點
在某一定直線上運動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
,直線
,
是拋物線的焦點。![]()
(1)在拋物線上求一點
,使點
到直線
的距離最小;
(2)如圖,過點
作直線交拋物線于A、B兩點.
①若直線AB的傾斜角為
,求弦AB的長度;
②若直線AO、BO分別交直線
于
兩點,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com