(12分)拋物線
的焦點(diǎn)為
,過點(diǎn)
的直線交拋物線于
,
兩點(diǎn).
①
為坐標(biāo)原點(diǎn),求證:
;
②設(shè)點(diǎn)
在線段
上運(yùn)動,原點(diǎn)
關(guān)于點(diǎn)
的對稱點(diǎn)為
,求四邊形
面積的最小值..
(Ⅰ)見解析;(Ⅱ)
時(shí),四邊形
的面積最小,最小值是
.
解析試題分析:(1)先利用已知條件設(shè)出直線AB的方程,與拋物線聯(lián)立方程組,然后結(jié)合韋達(dá)定理表示出向量的數(shù)量積,進(jìn)而證明。
(2)根據(jù)由點(diǎn)
與原點(diǎn)
關(guān)于點(diǎn)
對稱,得
是線段
的中點(diǎn),從而點(diǎn)
與點(diǎn)
到直線
的距離相等,得到四邊形
的面積等于
,結(jié)合三角形面積公式得到。
(Ⅰ)解:依題意
,設(shè)直線
方程為
. …………1分
將直線
的方程與拋物線的方程聯(lián)立,消去
得
.……3分
設(shè)
,
,所以
,
.
=1,
故
.………………6分
(Ⅱ)解:由點(diǎn)
與原點(diǎn)
關(guān)于點(diǎn)
對稱,得
是線段
的中點(diǎn),從而點(diǎn)
與點(diǎn)
到直線
的距離相等,所以四邊形
的面積等于
.……8分
因?yàn)?
……………9分
,…………11分
所以
時(shí),四邊形
的面積最小,最小值是
. ……12分
考點(diǎn):本試題主要是考查了直線與拋物線愛你的位置關(guān)系的運(yùn)用。
點(diǎn)評:對于幾何中的四邊形的面積一般運(yùn)用轉(zhuǎn)換與化歸的思想來求解得到。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)設(shè)
,在平面直角坐標(biāo)系中,已知向量
,向量
,
,動點(diǎn)
的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知橢圓
的一個(gè)焦點(diǎn)
與拋物線
的焦點(diǎn)重合,P為橢圓與拋物線的一個(gè)公共點(diǎn),且|PF|=2,傾斜角為
的直線
過點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為
,問拋物線
上是否存在一點(diǎn)
,使得
與
關(guān)于直線
對稱,若存在,求出點(diǎn)
的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,左右焦點(diǎn)分別為
,
(1)若
上一點(diǎn)
滿足
,求
的面積;
(2)直線
交
于點(diǎn)
,線段
的中點(diǎn)為
,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,橢圓
:
的左焦點(diǎn)為
,右焦點(diǎn)為
,離心率
.過
的直線交橢圓于
兩點(diǎn),且△
的周長為
.![]()
(Ⅰ)求橢圓
的方程.
(Ⅱ)設(shè)動直線
:
與橢圓
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)
,使得以
為直徑的圓恒過點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
雙曲線
的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為
,其中A
,B
.
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在
軸正半軸上的端點(diǎn),過B1作直線與雙曲線交于
兩點(diǎn),求
時(shí),直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P為曲線C上任一點(diǎn),若P到點(diǎn)F
的距離與P到直線
距離相等
(1)求曲線C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)A、B,
(I)若
,求直線l的方程;
(II)試問在x軸上是否存在定點(diǎn)E(a,0),使
恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓
的長軸長是短軸長的兩倍,且過點(diǎn)![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
交于不同的兩點(diǎn)
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com