中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•汕頭一模)某商店經銷一種洗衣粉,年銷售總量為6000包,每包進價為2.8元,銷售價為3.4元,全年分若干次進貨,每次進貨均為x包,已知每次進貨的運輸勞務費為62.5元,全年保管費為1.5x元.
(Ⅰ)將該商店經銷洗衣粉一年的利潤y(元)元表示為每次進貨量x(包)的函數;
(Ⅱ)為使利潤最大,每次應進貨多少包?
分析:(1)由年銷售總量為6000包,每次進貨均為x包,可得進貨次數,進而根據每包進價為2.8元,銷售價為3.4元,計算出收入,由每次進貨的運輸勞務費為62.5元,全年保管費為1.5x元計算出成本,相減可得利潤的表達式;
(II)由(1)中函數的解析式,由基本不等式,結合x的實際意義,可得使利潤最大,每次應進貨包數.
解答:解:(Ⅰ)由題意可知:一年總共需要進貨
6000
x
(x∈N*且x≤6000)次,
y=3.4×6000-2.8×6000-
6000
x
•62.5-1.5x

整理得:y=3600-
375000
x
-
3x
2
(x∈N*且x≤6000).
(Ⅱ)y=3600-
375000
x
-
3x
2
=3600-(
375000
x
+
3x
2
)
(x∈N*且x≤6000),
375000
x
+
3x
2
2
375000
x
3x
2
=2
562500
=2×750=1500

(當且僅當
375000
x
=
3x
2
,即x=500時取等號)
∴當x=500時,ymax=3600-1500=2100(元),
答:當每次進貨500包時,利潤最大為2100元.
點評:本題考查的知識點是函數最值的應用,其中根據已知條件計算出利潤y(元)元表示為每次進貨量x(包)的函數表達式是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•汕頭一模)(坐標系與參數方程選做題)過點(2,
π
3
)
且平行于極軸的直線的極坐標方程為
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•汕頭一模)(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•汕頭一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E為DB的中點.
(Ⅰ)證明:AE⊥BC;
(Ⅱ)若點F是線段BC上的動點,設平面PFE與平面PBE所成的平面角大小為θ,當θ在[0,
π4
]內取值時,直線PF與平面DBC所成的角為α,求tanα的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•汕頭一模)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設FC的中點為M,求證:OM∥平面DAF;
(3)求三棱錐F-CBE的體積.

查看答案和解析>>

同步練習冊答案