(本小題滿分16分)
已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(3)已知
,如果存在
,使得函數(shù)![]()
在
處取得最小值,試求
的最大值.
(1)
(2)
(3)![]()
解析試題分析:(1)當(dāng)
時(shí),
,則
,故
………2分
又切點(diǎn)為
,故所求切線方程為
,即
……………………4分
(2)由題意知,
在區(qū)間(1,2)上有不重復(fù)的零點(diǎn),
由
,得
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/0/w2dd7.png" style="vertical-align:middle;" />,所以
……7分
令
,則
,故
在區(qū)間(1,2)上是增函數(shù),
所以其值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/86/4/1zrmk3.png" style="vertical-align:middle;" />,從而
的取值范圍是
……………………………9分
(3)
,
由題意知
對(duì)
恒成立,即
對(duì)
恒成立,即
①對(duì)
恒成立 ……………………………11分
當(dāng)
時(shí),①式顯然成立;
當(dāng)
時(shí),①式可化為
②,
令
,則其圖象是開口向下的拋物線,所以
……………13分
即
,其等價(jià)于
③ ,
因?yàn)棰墼?img src="http://thumb.zyjl.cn/pic5/tikupic/8c/2/iyhqy.png" style="vertical-align:middle;" />時(shí)有解,所以
,解得
,
從而
的最大值為
……………………………16分
考點(diǎn):導(dǎo)數(shù)的幾何意義及函數(shù)零點(diǎn),不等式與函數(shù)的轉(zhuǎn)化
點(diǎn)評(píng):不等式恒成立問題常轉(zhuǎn)化為函數(shù)最值問題,不等式問題常轉(zhuǎn)化為函數(shù)問題求解
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)
,點(diǎn)P(
,0)是函數(shù)
的圖象的一個(gè)公共點(diǎn),兩函數(shù)的圖象在點(diǎn)P處有相同的切線.
(1)用
表示a,b,c;
(2)若函數(shù)
在(-1,3)上單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù)f(x)=lnx+![]()
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m
R,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>
∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
,
,
,其中
且
.
(I)求函數(shù)
的導(dǎo)函數(shù)
的最小值;
(II)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間及極值;
(III)若對(duì)任意的
,函數(shù)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
.
(1)當(dāng)
時(shí),求證:函數(shù)
在
上單調(diào)遞增;
(2)若函數(shù)
有三個(gè)零點(diǎn),求
的值;
(3)若存在
,使得
,試求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
,
.
(Ⅰ)若
,求函數(shù)
的極值;
(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間
上不存在
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分) 已知函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)當(dāng)
時(shí),判斷方程
實(shí)根個(gè)數(shù).
(3)若
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)![]()
(1)若
是
的極值點(diǎn),求
在
上的最大值
(2)若函數(shù)
是R上的單調(diào)遞增函數(shù),求實(shí)數(shù)的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)
是定義在
上的奇函數(shù),函數(shù)
與
的圖象關(guān)于
軸對(duì)稱,且當(dāng)
時(shí),
.
(I)求函數(shù)
的解析式;
(II)若對(duì)于區(qū)間
上任意的
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com