中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,在棱長為1的正方體中.

(1)求異面直線所成的角;
(2)求證平面⊥平面

(1)(2)先證即可得證.

解析試題分析:
(1)如圖,
就是異面直線所成的角.
連接,在中,,則
因此異面直線所成的角為.                           
(2) 由正方體的性質可知 , 故,           
又 正方形中, ∴ ;     
,    ∴ 平面.   
考點:向量語言表述面面的垂直、平行關系;用空間向量求直線間的夾角、距離.
點評:本題考查的知識點是向量語言表述直線的垂直關系,用空間向量求直線間的夾角,其中解法一(幾
何法)的關鍵是熟練掌握空間線面關系的判定、性質及相互轉換;解法二(向量法)的關鍵是建立恰當的
空間坐標系,將空間線面關系問題轉化為向量夾角問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,△中,,在三角形內挖去一個半圓(圓心在邊上,半圓與分別相切于點,與交于點),將△繞直線旋轉一周得到一個旋轉體。

(1)求該幾何體中間一個空心球的表面積的大小;
(2)求圖中陰影部分繞直線旋轉一周所得旋轉體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,分別是的中點.

(1)求證: 底面
(2)求證:平面平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線所成角的余弦值;
(Ⅲ)探究在上是否存在點Q,使得,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖,已知圓錐的軸截面ABC是邊長為的正三角形,O是底面圓心.

(1)求圓錐的表面積;
(2)經過圓錐的高的中點作平行于圓錐底面的截面,求截得的圓臺的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.

(1)求該幾何體的體積V;
(2)求該幾何體的側面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)
已知平面,且是垂足,

證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長是,側棱長是3,點E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.

(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題9分)如圖是一個空間幾何體的三視圖,其正視圖與側視圖是邊長為4cm的正三角形、俯視圖中正方形的邊長為4cm,

(1)畫出這個幾何體的直觀圖(不用寫作圖步驟);
(2)請寫出這個幾何體的名稱,并指出它的高是多少;
(3)求出這個幾何體的表面積。

查看答案和解析>>

同步練習冊答案