中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD•BC;類似地有命題:在三棱錐A-BCD中,AD⊥面ABC,若A點在BCD內的射影為M,則有
S
2
△ABC
=S△BCMS△BCD
.上述命題是(  )
分析:連接AE,證明AM⊥DE,AD⊥AE,由射影定理可得AE2=EM•ED,再結合三角形的面積公式可得結論.
解答:解:連接AE,則
因為AD⊥面ABC,AE?面ABC,
所以AD⊥AE.
又AM⊥DE,
所以由射影定理可得AE2=EM•ED.
于是S△ABC2=(
1
2
BC•AM)2=
1
2
BC•EM•
1
2
BC•MD
=S△BCM•S△BCD
故有S△ABC2=S△BCM•S△BCD
所以命題是一個真命題.
故選A.
點評:本題考查類比推理及利用平面的性質證明空間的結論,考查空間想象能力,證明AE2=EO•ED是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在△ABC中,設
AB
=a
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習冊答案