中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如下圖,矩形ABCD,|AB|=1,|BC|=a,PA⊥平面ABCD,|PA|=1。

(1)BC邊上是否存在點Q,使得PQQD,并說明理由;

(2)若BC邊上存在唯一的點Q使得PQQD,指出點Q的位置,并求出此時AD與平面

PDQ所成的角的正弦值;

(3)在(2)的條件下,求二面角Q―PD―A的正弦值。

解:(1)若BC邊上存在點Q,使PQ⊥QD,因PA⊥面ABCD知AQ⊥QD。

矩形ABCD中,當a<2時,直線BC與以AD為直徑的圓相離,故不存在點Q使AQ⊥QD,

故僅當a≥2時才存在點Q使PQ⊥QD;

(2)當a=2時,以AD為直徑的圓與BC相切于Q,此時Q是唯一的點使∠AQD為直角,且Q為BC的中點。作AH⊥PQ于H,可證∠ADH為AD與平面PDQ所成的角,且在Rt△AHD中可求得

(3)作AG⊥PD于G,可證∠AGH為二面角Q―PD―A的平面角,且在Rt△PAD中可求得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:044

    如下圖,矩形ABCDADQP所在平面垂直,將矩形ADQP沿PD對折,使得翻折后點Q落在BC上,設AB=1PA=h,AD=y.

    (1)試求y關于h的函數解析式;

    (2)y取最小值時,指出點Q的位置,并求出此時AD與平面PDQ所成的角;

    (3)在條件(2)下,求三棱錐PADQ內切球的半徑.

 

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

    如下圖,矩形ABCDADQP所在平面垂直,將矩形ADQP沿PD對折,使得翻折后點Q落在BC上,設AB=1,PA=h,AD=y.

    (1)試求y關于h的函數解析式;

    (2)y取最小值時,指出點Q的位置,并求出此時AD與平面PDQ所成的角;

    (3)在條件(2)下,求三棱錐PADQ內切球的半徑.

 

查看答案和解析>>

科目:高中數學 來源:2014屆云南省高二下期末考試文科數學卷(解析版) 題型:選擇題

如下圖,矩形ABCD中,點E為邊CD上任意一點,若在矩形ABCD內部隨機取一個點Q,則點Q取自△ABE內部的概率等于(      )

A.              B.               C.               D.

 

查看答案和解析>>

科目:高中數學 來源:同步題 題型:解答題

如下圖,矩形ABCD是機器人踢球的場地,AB=170cm,AD=80cm,機器人先從AD中點E進入場地到點F處,EF=40cm,EF⊥AD。場地內有一小球從點B向點A運動,機器人從點F出發去截小球,F機器人和小球同時出發,它們均作勻速直線運動,并且小球運動的速度是機器人行走速度的2倍。若忽略機器人原地旋轉所需的時間,則機器人最快可在何處截住小球?

查看答案和解析>>

同步練習冊答案