已知矩陣A=
有一個(gè)屬于特征值1的特征向量
.
(Ⅰ) 求矩陣A;
(Ⅱ) 若矩陣B=
,求直線
先在矩陣A,再在矩陣B的對(duì)應(yīng)變換作用下的像的方程.
(1)A=
.(2)![]()
解析試題分析:(Ⅰ)由已知得
,所以
2分
解得
故A=
. ……………………………………………………3分
(Ⅱ) BA=![]()
=
,因?yàn)榫仃?i>BA所對(duì)應(yīng)的線性變換將直線變成直線(或點(diǎn)),所以可取直線
上的兩點(diǎn)(0,1),(-1,2), 4分
,
,由得:(0,1),(-1,2)在矩陣A所對(duì)應(yīng)的線性變換下的像是點(diǎn)(1,-3),(-1,-1) 6分
從而直線
在矩陣BA所對(duì)應(yīng)的線性變換下的像的方程為
. 7分
考點(diǎn):矩陣的概念和變換
點(diǎn)評(píng):主要是考查了矩陣的計(jì)算以及變換的運(yùn)用,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
和e2=
.
(1)求矩陣A.
(2)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,直線
在矩陣
對(duì)應(yīng)的變換作用下得到直線![]()
,求實(shí)數(shù)
、
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將正整數(shù)
(
)任意排成
行
列的數(shù)表.對(duì)于某一個(gè)數(shù)表,計(jì)算各行和各列中的任意兩個(gè)數(shù)
(
)的比值
,稱(chēng)這些比值中的最小值為這個(gè)數(shù)表的“特征值”.若
表示某個(gè)
行
列數(shù)表中第
行第
列的數(shù)(
,
),且滿(mǎn)足
,當(dāng)
時(shí)數(shù)表的“特征值”為_(kāi)________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)矩陣M=
(其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M-1;
(2)若曲線C:x2+y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C′:
+y2=1,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線
在矩陣
對(duì)應(yīng)的變換作用下變?yōu)橹本![]()
(I)求實(shí)數(shù)
的值
(II)若點(diǎn)
在直線
上,且
,求點(diǎn)
的坐標(biāo)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com