中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知命題:若數列{an}為等差數列,且am=a,an=b(m≠n,m、n∈N*),則am+n=;現已知等比數列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若類比上述結論,則可得到bm+n=   
【答案】分析:首先根據等差數列和等比數列的性質進行類比,等差數列中的bn-am可以類比等比數列中的,等差數列中的可以類比等比數列中的,很快就能得到答案.
解答:解:等差數列中的bn和am可以類比等比數列中的bn和am
等差數列中的bn-am可以類比等比數列中的,
等差數列中的可以類比等比數列中的
故bm+n=,
故答案為
點評:本題主要考查類比推理的知識點,解答本題的關鍵是熟練掌握等差數列和等比數列的性質,根據等差數列的所得到的結論,推導出等比數列的結論,本題比較簡單.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題:若數列{an}為等差數列,且am=a,an=b(m≠n,m、n∈N*),則am+n=
bn-amn-m
;現已知等比數列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若類比上述結論,則可得到bm+n=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題:“若數列{an}為等差數列,且am=a,an=b(m≠n,m,n∈N+),則am+n=
ma-nbm-n
”.現已知數列{bn}(bn>0,n∈N+)為等比數列,且bm=a,bn=b(m≠n,m,n∈N+).
(1)請給出已知命的證明;
(2)類比(1)的方法與結論,推導出bm+n

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知命題:“若數列{an}為等差數列,且am=a,an=b(m≠n,m,n∈N+),則am+n=
ma-nb
m-n
”.現已知數列{bn}(bn>0,n∈N+)為等比數列,且bm=a,bn=b(m≠n,m,n∈N+).
(1)請給出已知命的證明;
(2)類比(1)的方法與結論,推導出bm+n

查看答案和解析>>

科目:高中數學 來源:《第2章 推理與證明》2010年單元測試卷(解析版) 題型:解答題

已知命題:“若數列{an}為等差數列,且am=a,an=b(m≠n,m,n∈N+),則”.現已知數列{bn}(bn>0,n∈N+)為等比數列,且bm=a,bn=b(m≠n,m,n∈N+).
(1)請給出已知命的證明;
(2)類比(1)的方法與結論,推導出bm+n

查看答案和解析>>

同步練習冊答案