中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

等差數列{an}的公差d不為0,Sn是其前n項和,給出下列命題:

①若d<0,且S3=S8,則S5和S6都是{Sn}中的最大項;

②給定n,對于一切,都有

③若d>0,則{Sn}中一定有最小的項;

④存在,使同號。

其中正確命題的個數為

A.4                B.3                C.2                D.1

 

【答案】

    B

【解析】

試題分析:因為{ an }成等差數列,所以其前n項和是關于n的二次函數的形式且缺少常數項。

d<0說明二次函數開口向下,又S3=S8,說明函數關于直線x=5.5對稱,所以S5和S6都是最大項,①正確;

同理,若d>0,說明函數是遞增的,故{Sn}中一定存在最小的項,③正確;

而②是等差中項的推廣,正確;

對于④,因為d≠0,所以二者異號.

所以正確命題的個數為3個.

故選B。

考點:本題主要考查等差數列的通項公式、求和公式,等差數列的性質。

點評:中檔題,等差數列與一次函數密切相關,特別是其前n項和公式是關于n的二次函數的形式且缺少常數項(d不為0),所以可結合二次函數性質解題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果一個數列的各項都是實數,且從第二項開始,每一項與它前一項的平方差是相同的常數,則稱該數列為等方差數列,這個常數叫這個數列的公方差.
(1)設數列{an}是公方差為p的等方差數列,求an和an-1(n≥2,n∈N)的關系式;
(2)若數列{an}既是等方差數列,又是等差數列,證明該數列為常數列;
(3)設數列{an}是首項為2,公方差為2的等方差數列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

按照等差數列的定義我們可以定義“等和數列”:在一個數列中,如果每一項與它的后一項的和都為同一個常數,那么這個數列叫做等和數列,這個常數叫做該數列的公和.已知數列{an}是等和數列,且a1=2,公和為5,那么a8的值為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)如果一個數列的各項都是實數,且從第二項起,每一項與它的前一項的平方差是同一個常數,則稱該數列為等方差數列,這個常數叫這個數列的公方差.
(Ⅰ)若數列{an}既是等方差數列,又是等差數列,求證:該數列是常數列;
(Ⅱ)已知數列{an}是首項為2,公方差為2的等方差數列,數列{bn}的前n項和為Sn,且滿足an2=2n+1bn.若不等式2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果一個數列的各項均為實數,且從第二項起開始,每一項的平方與它前一項的平方的差都是同一個常數,則稱該數列為等方差數列,這個常數叫做這個數列的公方差.
(1)若數列{bn}是等方差數列,b1=1,b2=3,求b7
(2)是否存在一個非常數數列的等差數列或等比數列,同時也是等方差數列?若存在,求出這個數列;若不存在,說明理由.
(3)若正項數列{an}是首項為2、公方差為4的等方差數列,數列{
1
an
}
的前n項和為Tn,是否存在正整數p,q,使不等式Tn
pn+q
-1
對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若各項都是實數的數列從第二項起,每一項與它前一項的平方差是同一常數,則稱該數列為等方差數列,這個常數叫這個數列的公方差.
(Ⅰ)若數列{an}是等差數列,前n項和為Tn,并且an2=T2n-1,求通項an
(Ⅱ)若數列{an}是首項為2,公方差為2的等方差數列,數列{bn}的前n項和為Sn,且an2=2n+1bn2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案