中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知是R上的奇函數,且當時,,求的解析式。

解析試題分析:函數是定義在R上的奇函數,所以,當時,,綜上
考點:函數求解析式
點評:本題主要是求當時的解析式,首先轉化到已知條件部分,即可代入已知解析式,最后在借助于函數奇偶性轉化到部分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

判斷下列函數的奇偶性
(1)                  (2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是函數在點附近的某個局部范圍內的最大(小)值,則稱是函數的一個極值,為極值點.已知,函數
(Ⅰ)若,求函數的極值點;
(Ⅱ)若不等式恒成立,求的取值范圍.
為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,,是否存在實數,使同時滿足下列兩個條件:(1)上是減函數,在上是增函數;(2)的最小值是,若存在,求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)若的圖象恰有兩個交點,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

證明:函數是偶函數,且在上是減少的。(13分)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中實數,是自然對數的底數).
(Ⅰ)當時,求函數在點處的切線方程;
(Ⅱ)求在區間上的最小值;
(Ⅲ) 若存在,使方程成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

判斷函數 (≠0)在區間(-1,1)上的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若上單調遞增,求的取值范圍;
(2)若定義在區間D上的函數對于區間上的任意兩個值總有以下不等式成立,則稱函數為區間上的 “凹函數”.試證當時,為“凹函數”.

查看答案和解析>>

同步練習冊答案