(2013·上海高考)如圖,已知雙曲線C1:
-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點(diǎn).若存在過點(diǎn)P的直線與C1,C2都有共同點(diǎn),則稱P為“C1-C2型點(diǎn)”.![]()
(1)在正確證明C1的左焦點(diǎn)是“C1-C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證).
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)求證:圓x2+y2=
內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓![]()
的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為
,上頂點(diǎn)為B,拋物線
分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,
與
相交于 直線
上一點(diǎn)P.
(1)求橢圓C及拋物線
的方程;
(2)若動(dòng)直線
與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn)
,求
的最小值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,過
的左焦點(diǎn)
的直線
被圓
截得的弦長(zhǎng)為
.
(1)求橢圓
的方程;
(2)設(shè)
的右焦點(diǎn)為
,在圓
上是否存在點(diǎn)
,滿足
,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率
,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP'Q的面積S的最大值,并寫出對(duì)應(yīng)的圓Q的標(biāo)準(zhǔn)方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸均為MN且在x軸上,短軸長(zhǎng)分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記
,△BDM和△ABN的面積分別為S1和S2.
(1)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(2)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)過點(diǎn)
,且橢圓
的離心率為
.
(1)求橢圓
的方程;
(2)若動(dòng)點(diǎn)
在直線
上,過
作直線交橢圓
于
兩點(diǎn),且
為線段
中點(diǎn),再過
作直線
.求直線
是否恒過定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓
.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的左、右焦點(diǎn)分別為
,其上頂點(diǎn)為
已知
是邊長(zhǎng)為
的正三角形.![]()
(1)求橢圓
的方程;
(2)過點(diǎn)
任作一動(dòng)直線
交橢圓
于
兩點(diǎn),記
.若在線段
上取一點(diǎn)
,使得
,當(dāng)直線
運(yùn)動(dòng)時(shí),點(diǎn)
在某一定直線上運(yùn)動(dòng),求出該定直線的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com