中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(12分)

設橢圓C:(a>b>0)過點(0,4),離心率為

(1)   求C的方程。

(2)   求過點(3,0)且斜率為 的直線被橢圓C所截線段的中點坐標。

 

 

【答案】

解:(1)橢圓C的方程                            6分

(2)直線方程為                                7分

直線與橢圓方程聯立得                         8分

韋達定理解得中點坐標                               12分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知m>1,直線l:x-my-
m
2
2
=0,橢圓C:
x2
m2
+y2
=1,F1,F2分別為橢圓C的左右焦點.設直線l與橢圓C交于A、B兩點,△AF1F2,△BF1F2的重心分別為G,H,若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•河南模擬)設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F2,上頂點為A,過點A與AF2垂直的直線交z軸負半軸于點Q,且2
F1F2
+
F2Q
=0
,過A,Q,F2三點的圓的半徑為2.過定點M(0,2)的直線l與橢圓C交于G,H兩點(點G在點M,H之間).
(I)求橢圓C的方程;
(Ⅱ)設直線l的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•成都模擬)已知m>1,直線l:x-my-
m2
2
=0,橢圓C:
x2
m2
+y2=1,F1、F2分別為橢圓C的左、右焦點.
(I)當直線l過右焦點F2時,求直線l的方程;
(II)當直線l與橢圓C相離、相交時,求m的取值范圍;
(III)設直線l與橢圓C交于A、B兩點,△AF1F2,△BF1F2的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:模擬題 題型:解答題

如圖,設橢圓C:(a>b>0)的左、右焦點分別為F1,F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且,若過 A,Q,F2三點的圓恰好與直線l:相切,過定點 M(0,2)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間)。

(1)求橢圓C的方程;
(2)設直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由;
(3)若實數λ滿足,求λ的取值范圍。

查看答案和解析>>

科目:高中數學 來源:2010-2011學年北京市朝陽區高三(上)期末數學試卷(理科)(解析版) 題型:解答題

設橢圓C:(a>b>0)的左、右焦點分別為F1,F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且,若過A,Q,F2三點的圓恰好與直線l:相切.過定點M(0,2)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請說明理由;
(Ⅲ)若實數λ滿足,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案