數(shù)列

的前n項和

;

(n∈N*);則數(shù)列

的前50項和為 ( )
解:∵數(shù)列{an}的前n項和Sn=n2+n+1,
∴a1=s1=3,當(dāng)n≥2時,an=Sn -sn-1=n2+n+1-[(n-1)2+(n-1)+1]=2n,
故an=" 3" , n=1
2n , n≥2 .
∴bn=(-1)n an =" -" 3 , n="1"
(-1)n•2n , n≥2 ,
∴數(shù)列{bn}的前50項和為(-3+4)+(-6+8)+(-10+12)+…(-98+100)=1+24×2=49,
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)數(shù)列{an},{bn}都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5=_________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知隨機變量

只能取三個值

,其概率依次成等差數(shù)列,則公差

的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知正項等比數(shù)列

(1)求數(shù)列

的通項公式;
(2)若

分別是等差數(shù)列

的第3項和第5項,求數(shù)列

的通項公式及前
n項和

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
數(shù)列

的前

項和記為

,

,點

在直線

上,

.
(Ⅰ)當(dāng)實數(shù)

為何值時,數(shù)列

是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)

,

是數(shù)列

的前

項和,求

的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

(x≠0),各項均為正數(shù)的數(shù)列

中

,

,

.
(Ⅰ)求數(shù)列

的通項公式;
(Ⅱ)在數(shù)列

中,對任意的正整數(shù)

,

都成立,設(shè)

為數(shù)列

的前

項和試比較

與

的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知等差數(shù)列

的前n項和為

,首項

,公差

,且

成等比數(shù)列。
(1)求數(shù)列

的通項公式及

;
(2)記

=

+

+

+…+

,

=

+

+

+… +

,
當(dāng)n≥2時,試比較

與

的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
數(shù)列

的各項均為正數(shù),

為其前

項和,對于任意

,總有

成等差數(shù)列.設(shè)數(shù)列

的前

項和為

,且

,則對任意實數(shù)

(

是常數(shù),

)和任意正整數(shù)

,

小于的最小正整數(shù)為 ( )
查看答案和解析>>