(本小題11分)如圖,在四棱錐
中,
平面
,
,
,
,
,
.![]()
(1)證明:
平面
(2)求
和平面
所成角的正弦值
(3)求二面角
的正切值;
(1)見解析;(2)
;(3)
。
解析試題分析:(1)
平面
,所以
,又![]()
所以
平面
……………… 2分![]()
(2)如圖,作
,交
于點
,
平面
,
平面
所以![]()
又
,所以
平面![]()
所以
是
和平面
所成角………………4分
中,![]()
……………………6分
所以
和平面
所成角的正弦為
……………… 7分
(3)作
交
于點
,連接![]()
平面
,所以
,又
,所以
平面
,所以![]()
又
,所以
平面
,所以
,
所以
是二面角
的平面角。……………… 9分
中,
,![]()
二面角
的正切值為
…………………… 11分
(用向量法酌情給分)
考點:線面垂直的性質定理;線面垂直的判定定理;面面垂直項性質定理;直線與平面所成的角;二面角。
點評:本題主要考查的知識點是二面角的平面角及求法,直線與平面垂直的判定。解決這類問題的常用方法有:綜合法和向量法。本題用的是綜合法,當然也可以用向量法。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=
,D是A1B1中點.![]()
(1)求證:C1D⊥AB1 ;
(2)當點F在BB1上什么位置時,會使得AB1⊥平面C1DF?并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.![]()
(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(端點除外),滿足
.(
)
①求證:對于任意的
,恒有SC∥平面AEF;
②是否存在
,使得△AEF為直角三角形,若存在,求出所有符合條件的
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分) 如圖,平面
⊥平面
,其中
為矩形,
為梯形,
∥
,
⊥
,
=
=2
=2,
為
中點.
(Ⅰ) 證明
;
(Ⅱ) 若二面角
的平面角的余弦值為
,求
的長.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)已知:四邊形ABCD是空間四邊形,E, H分別是邊AB,AD的中點,F, G分別是邊CB,CD上的點,且
.
求證:(1)四邊形EFGH是梯形;
(2)FE和GH的交點在直線AC上 .
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=
.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本小題滿分14分)
如圖,在直三棱柱
中,
,
,
,點
、
分別是
、
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)證明:平面
平面
;
(Ⅲ)求多面體A1B1C1BD的體積V.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com