已知平面

截圓柱體,截口是一條封閉曲線,且截面與底面所成的
角為30°,此曲線是
,它的離心率為
.
橢圓,
橢圓,

,橢圓的短軸長為圓柱底面直徑2r,長軸長為

,所以離心率為

.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點P與定點F

的距離和它到定直線
l:
的距離之比是1 : 2.
(1)求點P的軌跡C方程;
(2)過點F的直線交曲線C于A, B兩點, A, B在
l上的射影分別為M, N.
求證AN與BM的公共點在x軸上.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點

是以

為焦點的橢圓

上一點,
且

,

,則此橢圓的離心率


查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓

的左、右焦點分別為

,拋物線

的焦點為
F。若

,則此橢圓的離心率為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓

上的動點,點Q在NP上,點G在MP上,且滿足

.
(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線

,與曲線C交于A、B兩點,O是坐標原點,設

是否存在這樣的直線

,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線

的方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)標準橢圓

的兩焦點為

,

在橢圓上,且

. (1)求橢圓方程;(2)若
N在橢圓上,
O為原點,直線

的方向向量為

,若

交橢圓于
A、
B兩點,且
NA、
NB與

軸圍成的三角形是等腰三角形(兩腰所在的直線是
NA、
NB),則稱
N點為橢圓的特征點,求該橢圓的特征點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓

的左右焦點分別為

,

是橢圓右準線上的兩個動點,且

=0.
(1)設圓

是以

為直徑的圓,試判斷原點

與圓

的位置關系
(2)設橢圓的離心率為

,

的最小值為

,求橢圓的方程

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓

的兩焦點與短軸的一個端點的連線構成等腰直角三角形,直線

是拋物線

的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點

的動直線
L交橢圓
C于
A、
B兩點.問:是否存在一個定點
T,使得以
AB為直徑的圓恒過點
T ? 若存在,求點
T坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓的中心在坐標原點O,右焦點F(c,0)到相應準線的距離為1,傾斜角為45°的直線交橢圓于A,B兩點.設AB中點為M,直線AB與OM的夾角為

a.
(1)用半焦距c表示橢圓的方程及


;
(2)若2<


<3,求橢圓率心率e的取值范圍.
查看答案和解析>>