中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在△ABC中,a,b,c分別為內角A,B,C的對邊,且b2+c2-a2=bc.向量
m
=(
3
sin
x
2
,1)  ,
n
=(cos
x
2
cos2
x
2
)

(Ⅰ)求角A的大;
(Ⅱ)設函數f(x)=
m
n
,當f(B)取最大值
3
2
時,判斷△ABC的形狀.
分析:(Ⅰ)利用余弦定理表示出cosA,將已知的等式代入求出cosA的值,由A為三角形的內角,利用特殊角的三角函數值即可求出A的度數;
(Ⅱ)由兩向量的坐標,利用平面向量的數量積運算法則表示出
m
n
,并利用二倍角的正弦、余弦函數公式化簡,再利用兩角和與差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數,確定出函數f(x)的解析式,由A的度數,得到B的取值范圍,進而確定出這個角的范圍,根據正弦函數的圖象與性質得到此時正弦函數的最大值,進而確定出函數的最大值,以及正弦函數取得最大值時B的度數,由A和B的度數,利用三角形的內角和定理求出C的度數,可得到三內角相等,可判斷出三角形為等邊三角形.
解答:解:(Ⅰ)∵b2+c2-a2=bc,
∴由余弦定理得:cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
,…(3分)
∵0<A<π,…(4分)
∴A=
π
3
;…(5分)
(Ⅱ)∵
m
=(
3
sin
x
2
,1)  ,
n
=(cos
x
2
,cos2
x
2
)
,
∴函數f(x)=
m
n
=
3
sin
x
2
cos
x
2
+cos2
x
2

=
3
2
sinx+
1
2
cosx+
1
2
 …(7分)
=sin(x+
π
6
)+
1
2
,…9分
∵A=
π
3
,∴B∈(0,
3
),
π
6
<B+
π
6
6
,…(10分)
∴當B+
π
6
=
π
2
,即B=
π
3
時,f(B)有最大值是
3
2
,…(12分)
又∵A=
π
3
,∴C=
π
3

則△ABC為等邊三角形.…(14分)
點評:此題考查了余弦定理,平面向量的數量積運算,二倍角的正弦、余弦函數公式,兩角和與差的正弦函數公式,正弦函數的圖象與性質,等邊三角形的判定,以及特殊角的三角函數值,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知y=f(x)函數的圖象是由y=sinx的圖象經過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2
;
③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案