中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax-21nx,a∈R
(Ⅰ)a=1時,求函數f(x)的極值;
(Ⅱ)求f(x)單調區間
(Ⅲ)設g(x)=
a+2ex
(a>0)
,若在[1,e]上至少存在一個x0,使得f(x0)>g(x0)成立,求實數a的取值范圍.
分析:(I)由題意對函數求導,然后解f′(x)=0方程,得到x=2,將(0,+∞)分為二個區間,最后通過列表得出導數在這二個區間的符號,討論出函數的單調性,即可得出函數的極值.
(II)先求導數fˊ(x),求出f′(x)=0的值,再討論滿足f′(x)=0的點附近的導數的符號的變化情況,從而的函數f(x)的單調區間以及函數的極值,fˊ(x)>0的區間是增區間,fˊ(x)<0的區間是減區間.
(III)本命題等價于f(x)-g(x)>0在[1,e]上有解,設F(x)=f(x)-g(x)=ax-2lnx-
a+2e
x
,求導:
F'(x)=a-
2
x
+
a+2e
x2
=
ax2-2x+a+2e
x2
=
ax2+a+2(e-x)
x2
>0
,得出F(x)max=F(e).
依題意需F(e)>0,從而求得a的取值范圍.
解答:解:(I)f′(x)=1-
2
x
,x>0
.令f'(x)=0,得x=2
當x變化時,f'(x)與f(x)變化情況如下表:
x (0,2) 2 (2,+∞)
f'(x) - 0 +
f(x) 單調遞減 極小值 單調遞增
∴當x=2時,f(x)取得極小值f(2)=2-2ln2.
(Ⅱ)a≤0時,f(x)在(0,+∞)上為減函數;a>0時,f(x)在(0,
2
a
)上是減函數,
在(
2
a
,+∞
)上是增函數.
(Ⅲ)本命題等價于f(x)-g(x)>0在[1,e]上有解,設F(x)=f(x)-g(x)=ax-2lnx-
a+2e
x

F'(x)=a-
2
x
+
a+2e
x2
=
ax2-2x+a+2e
x2
=
ax2+a+2(e-x)
x2
>0

所以F(x)為增函數,F(x)max=F(e).
依題意需F(e)>0,解得a>
4e
e2-1
.所以a的取值范圍是(
4e
e2-1
,+∞)
點評:本題主要考查了函數的極值,以及利用導數研究函數的單調性等基礎知識,考查綜合利用數學知識分析問題、解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案