已知曲線C1的參數(shù)方程是
(φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為
,
(1)求點A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線C的參數(shù)方程為
(
為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點
,直線
的極坐標(biāo)方程為
.
(1)判斷點
與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線
與曲線C的兩個交點為A、B,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系
,以
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,,曲線
的參數(shù)方程為
.點
是曲線
上兩點,點
的極坐標(biāo)分別為
.
(1)寫出曲線
的普通方程和極坐標(biāo)方程;
(2)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從原點O引直線交直線2x+4y-1=0于點M,P為OM上一點,已知OP·OM=1,求P點所在曲線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,以
為極點,
軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為:
(
為參數(shù)),兩曲線相交于
兩點.
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)若
求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過點
,傾斜角α=
,圓C的極坐標(biāo)方程為
.
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于兩點A、B,求點P到A、B兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的極坐標(biāo)方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,設(shè)
為曲線
上任一點,求
的最小值,并求相應(yīng)點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,參數(shù)方程為
的直線
,被以原點為極點,
軸的正半軸為極軸,極坐標(biāo)方程為
的曲線
所截,求截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系
中,直線
的極坐標(biāo)方程為
是
上任意一點,點P在射線OM上,且滿足
,記點P的軌跡為
。
(Ⅰ)求曲線
的極坐標(biāo)方程;
(Ⅱ)求曲線
上的點到直線
距離的最大值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com