中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
2x+1x+1

(I)用定義證明函數在區間[1,+∞)是增函數;
(II)求該函數在區間[2,4]上的最大值與最小值.
分析:(Ⅰ)在區間[1,+∞)內任取兩數x1,x2并規定好大小,再作差f(x1)-f(x2),根據增函數的定義判斷即可;
(Ⅱ)又(1)可知f(x)=
2x+1
x+1
在區間[1,+∞)是增函數,從而在[2,4]上亦然為增函數,于是可求得函數在區間[2,4]上的最大值與最小值.
解答:(I)證明:任取1≤x1<x2,f(x1)-f(x2)=
2x1+1
x1+1
-
2x2+1
x2+1
=
(x1-x2
(x1+1)•(x2+1) 

∵1≤x1<x2,故x1-x2<0,(x1+1)(x2+1)>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函數f(x)=
2x+1
x+1
在區間[1,+∞)是增函數;
(II)由(I)知函數f(x)=
2x+1
x+1
在[2,4]上是增函數,
∴f(x)max=f(4)=
2×4+1
4+1
=
9
5

f(x)min=f(2)=
5
3
點評:本題考查函數單調性的性質,著重考查利用函數單調性的定義證明其單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案