數(shù)列{an}是公比為
的等比數(shù)列,且1-a2是a1與1+a3的等比中項,前n項和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項和Tn滿足Tn=n
·bn+1(
為常數(shù),且
≠1).
(I)求數(shù)列{an}的通項公式及
的值;
(Ⅱ)比較
+
+
+ +
與
Sn的大小.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}中,首項a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=
,其前n項和為Sn.
(1)求數(shù)列{an}的通項公式;
(2)若S2為S1,Sm (m∈N*)的等比中項,求正整數(shù)m的值.
(3)對任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項的個數(shù)記為ck,求數(shù)列{cn}的前n項和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等差數(shù)列{
}中,
=3,前7項和
=28.
(I)求數(shù)列{
}的公差d;
(II)若數(shù)列{
}為等比數(shù)列,且
,
求數(shù)列
的前n項和![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列
中,
、
、
、
構(gòu)成首項為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項為
,公比為
的等比數(shù)列,其中
,
.
(1)當
,
,時,求數(shù)列
的通項公式;
(2)若對任意的
,都有
成立.
①當
時,求
的值;
②記數(shù)列
的前
項和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的前n項和為Sn,且
.
(1)求數(shù)列
的通項公式;
(2)令
,記數(shù)列
的前
項和為
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
為數(shù)列
的前
項和,對任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列
是等比數(shù)列;
(2)數(shù)列
滿足
求數(shù)列
的通項公式;
(3)在滿足(2)的條件下,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
的公差
,它的前
項和為
,若
,且
成等比數(shù)列.(1) 求數(shù)列
的通項公式;(2)設(shè)數(shù)列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
滿足:
,
的前
項和為
。
(1)求
及
;
(2)令
(其中
為常數(shù),且
),求證數(shù)列
為等比數(shù)列。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com