如圖,已知橢圓
:
的離心率為
,點
為其下焦點,點
為坐標原點,過
的直線
:
(其中
)與橢圓
相交于
兩點,且滿足:
.![]()
(1)試用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為雙曲線
的一個焦點,且兩條曲線都經過點
.
(1)求這兩條曲線的標準方程;
(2)已知點
在拋物線上,且它與雙曲線的左,右焦點構成的三角形的面積為4,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動直線
與橢圓![]()
交于![]()
、![]()
兩不同點,且△
的面積
=
,其中
為坐標原點.
(1)證明
和
均為定值;
(2)設線段
的中點為
,求
的最大值;
(3)橢圓
上是否存在點
,使得
?若存在,判斷△
的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別為
,離心率為
,P是橢圓上一點,且
面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設點
是橢圓
在第一象限上的任一點,連接
,過
點作斜率為
的直線
,使得
與橢圓
有且只有一個公共點,設直線
的斜率分別為
,
,試證明
為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作
,設
交
于點
,
證明:當點
在橢圓上移動時,點
在某定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
的離心率與等軸雙曲線的離心率互為倒數,直線
與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com