中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-1,1),
n
=(1,2)
,點列Pn(an,bn)在L中,P1為L與y軸的公共點,等差數列{an}的公差為1.
(I)求數列{an},{bn}的通項公式;
(Ⅱ)若cn=
5
n|
P1Pn
|
(n≥2),c1=1
,數列{cn}的前n項和Sn滿足M+n2Sn≥6n對任意的n∈N*都成立,試求M的取值范圍.
分析:(I)首先運用向量數量積的運算得
m
=(2x-1,1),
n
=(1,2)得:y=
m
n
=2x+1
,然后再根據等差通項公式得an=a1+(n-1)×1=n-1,最后再根據bn=2an+1,得bn=2n-1
(Ⅱ)利用條件可得cn=
1
n-1
-
1
n
,從而Sn=1+(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)=2-
1
n
,故有
M+n2Sn≥6n可化為M+n2(2-
1
n
)≥6n,
要使M≥7n-2n2=-2(n-
7
4
)
2
+
49
8
對任意n∈N*都成立,
,從而可解.
解答:解:(I)由
m
=(2x-1,1),
n
=(1,2)得:y=
m
n
=2x+1

∴L:y=2x+1,P1(0,1),即a1=0,b1=1,故an=n-1,bn=2n-1(n∈N*
(Ⅱ)當n≥2時,Pn(n-1,2n-1),
P1Pn
=(n-1,2n-2)
,∴|
P1Pn
|=
5
(n-1)

cn=
5
n|
P1Pn
|
=
1
n(n-1)
=
1
n-1
-
1
n

Sn=1+(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)=2-
1
n

M+n2Sn≥6n可化為M+n2(2-
1
n
)≥6n,
要使M≥7n-2n2=-2(n-
7
4
)2+
49
8
對任意n∈N*都成立,

只須M≥6,當且僅當n=2時等號成立,即M的取值范圍為M≥6
點評:本題主要考查了數列與向量的綜合,考查裂項法求和,同時考查了最值法解決恒成立問題,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數列{an}的公差為1,n∈N*
(I)求數列{bn}的通項公式;
(Ⅱ)若f(n)=
an  n為正奇數
bn  n為正偶數
,令Sn=f(1)+f(2)+f(3)+…+f(n);試寫出Sn關于n的函數解析式;

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知點列Pn(an,bn)∈L,P1為L與y軸的交點.等差數列{an}的公差為1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)對于數列{bn},設Sn是其前n項和,是否存在一個與n無關的常數M,使
Sn
S2n
=M
,若存在,求出此常數M,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數列{an}的公差為1,(n∈N*
(1)求數列{an},{bn}的通項公式;
(2)若cn=
5
n•|P1Pn|
,(n≥2)
,求
lim
n→∞
(c2+c3+…+cn)

(3)若f(n)=
an,n=2k-1
bn,n=2k
(k∈N*)
,是否存在k∈N*,使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理) 已知點集L={(x,y)|y=
m
n
}
,其中
m
=(x-2b,2)
n
=(1,b+1)
,點Pn(an,bn)∈L,P1=L∩{(x,y)|x=1},且an+1-an=1,則數列{bn}的通項公式為
 

查看答案和解析>>

同步練習冊答案