中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.

(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.

(1) (2)-1

解析試題分析:(1)由拋物線的準線方程,求出p即可;(2)由直線BC方程求出x1和x2之間的關系式,然后用x1和x2表示出D點的坐標,即可求出直線CD的斜率.
試題解析:(1)因為橢圓N:的左焦點為(,0),
所以,解得p=1,所以拋物線M的方程為.
(2)由題意知 A(),因為,所以.由于t>0,所以t= ①
由點B(0,t),C( )的坐標知,直線BC的方程為
由因為A在直線BC上,故有,將①代入上式,得,解得,又因為D( ),所以直線CD的斜率為
kCD====-1.
考點:1.拋物線的方程和性質;(2)直線方程和斜率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)當點為直線上的定點時,求直線的方程;
(Ⅲ)當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,圓,動圓與已知兩圓都外切.
(1)求動圓的圓心的軌跡的方程;
(2)直線與點的軌跡交于不同的兩點的中垂線與軸交于點,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F為橢圓的右焦點,且·=1,||=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

經過點且與直線相切的動圓的圓心軌跡為.點在軌跡上,且關于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設直線與軌跡交于點.
(1)求軌跡的方程;
(2)證明:
(3)若點到直線的距離等于,且的面積為20,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點,自上而下順次記為,如果線段的長按此順序構成一個等差數列,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;(2)求的取值范圍;

查看答案和解析>>

同步練習冊答案