中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設函數時取得極值.
(1)求、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

(1)(2)

解析試題分析:解:(1)
因為函數取得極值,則有

解得
(2)由(1)可知,

時,
時,
時,
所以,當時,取得極大值,又
則當時,的最大值為
因為對于任意的,有恒成立,
所以 
解得 
因此的取值范圍為
考點:導數的運用
點評:主要是根據導數的符號于函數單調性的關系來得到函數的極值和最值,得到求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

函數

(1)若處取極值,求的值;
(2)設直線將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區域(不包括邊界),若圖象恰好位于其中一個區域,試判斷其所在區域并求出相應的的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 (R).
(1) 若,求函數的極值;
(2)是否存在實數使得函數在區間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若存在實常數,使得函數對其定義域上的任意實數分別滿足:,則稱直線的“隔離直線”.已知為自然對數的底數).
(1)求的極值;
(2)函數是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求證:函數上單調遞增;
(Ⅱ)若函數有三個零點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知時有極大值6,在時有極小值
的值;并求在區間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知.
(1)已知函數h(x)=g(x)+ax3的一個極值點為1,求a的取值;
(2) 求函數上的最小值;
(3)對一切恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求的單調區間;
(Ⅱ)設函數在點處的切線為,直線軸相交于點.若點的縱坐標恒小于1,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,設曲線在與軸交點處的切線為的導函數,滿足
(1)求的單調區間.
(2)設,求函數上的最大值;

查看答案和解析>>

同步練習冊答案