(2013•紹興一模)已知a為[0,1]上的任意實數,函數f
1(x)=x-a,f
2(x)=-x
2+1,f
3(x)=-x
3+x
2,則以下結論:
①對于任意x
0∈R,總存在f
i(x),f
j(x)({i,j}?{1,2,3}),使得f
i(x)f
j(x)≥0;
②對于任意x
0∈R,總存在f
i(x),f
j(x)({i,j}?{1,2,3}),使得f
i(x)f
j(x)≤0;
③對于任意的函數f
i(x),f
j(x)({i,j}?{1,2,3}),總存在x
0∈R,使得;f
i(x)f
j(x)>0;
④對于任意的函數f
i(x),f
j(x)({i,j}?{1,2,3}),總存在x
0∈R,使得;f
i(x)f
j(x)<0.
其中正確的為
①④
①④
.(填寫所有正確結論的序號)