中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2013•崇明縣二模)若拋物線y2=2px(p>0)的焦點與雙曲線x2-y2=2的右焦點重合,則p的值為
4
4
分析:將雙曲線化成標準方程,求得a2=b2=2的值,從而得到雙曲線的右焦點為F(2,0),該點也是拋物線的焦點,可得
p
2
=2,所以p的值為4.
解答:解:∵雙曲線x2-y2=2的標準形式為:
x2
2
-
y2
2
=1

∴a2=b2=2,可得c=
a2+b2
=2,雙曲線的右焦點為F(2,0)
∵拋物線y2=2px(p>0)的焦點與雙曲線x2-y2=2的右焦點重合,
p
2
=2,可得p=4
故答案為:4
點評:本題給出拋物線與雙曲線右焦點重合,求拋物線的焦參數的值,著重考查了雙曲線的標準方程和拋物線簡單幾何性質等知識點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•崇明縣二模)某日用品按行業質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中抽取200件,對其等級系數進行統計分析,得到頻率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
則在所抽取的200件日用品中,等級系數X=1的件數為
20
20

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)已知數列{an}是各項均不為0的等差數列,公差為d,Sn為其前n項和,且滿足an2=S2n-1,n∈N*.數列{bn}滿足bn=
1anan+1
,n∈N*,Tn為數列{bn}的前n項和.
(1)求數列{an}的通項公式an和數列{bn}的前n項和Tn
(2)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實數λ的取值范圍;
(3)是否存在正整數m,n(1<m<n),使得T1,Tm,Tn成等比數列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)設函數 f(x)=
2x      (x≤0)
log2x (x>0)
,函數y=f[f(x)]-1的零點個數為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)已知函數f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,則f(x)是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點,則 
AB
CD
=
-1
-1

查看答案和解析>>

同步練習冊答案