中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.

(Ⅰ)求橢圓C的方程和離心率e;

(Ⅱ)若點P為焦點F1關于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標及此定值;若不存在,請說明理由.

 

【答案】

(Ⅰ);(Ⅱ)存在一個定點且定值為.

【解析】

試題分析:(Ⅰ)依題意由線段F1F2為直徑的圓與直線相切,根據點到直線的距離公式得,可得c值,再由△AF1F2為正三角形,得a、b、c間關系,求出a、b的值,即得橢圓方程及離心率;(Ⅱ)假設存在一個定點T符合題意,先求出點關于直線的對稱點,由題意,可知動點M的軌跡,從而得解.

試題解析:解:(Ⅰ)設焦點為

以線段為直徑的圓與直線相切,,即c=2,     1分

為正三角形,,  4分

橢圓C的方程為,離心率為.        6分

(Ⅱ)假設存在一個定點T符合題意,設動點,由點

關于直線的對稱點,                     7分

兩邊平方整理得,                      10分

即動點M的軌跡是以點為圓心,長為半徑的圓,

存在一個定點且定值為.                         12分

考點:1、橢圓方程及性質;2、點到直線的距離公式;3、點關于直線的對稱點的求法;4、兩點間距離公式;5、圓的軌跡方程.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•臨沂二模)
x2
a2
+
y2
b2
=1
(a>b>0)如圖,已知橢圓C:的左、右焦點分別為F1、F2,離心率為
3
2
,點A是橢圓上任一點,△AF1F2的周長為4+2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(-4,0)任作一動直線l交橢圓C于M,N兩點,記
MQ
QN
,若在線段MN上取一點R,使得
MR
=-λ
RN
,則當直線l轉動時,點R在某一定直線上運動,求該定直線的方程.

查看答案和解析>>

科目:高中數學 來源:2013年浙江省嘉興市高考數學一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:的左、右焦點分別為F1,F2,O為原點.
(I)如圖①,點M為橢圓C上的一點,N是MF1的中點,且NF2丄MF1,求點M到y軸的距離;
(II)如圖②,直線l::y=k+m與橢圓C上相交于P,G兩點,若在橢圓C上存在點R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年山東臨沂高三5月高考模擬文科數學試卷(解析版) 題型:解答題

如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當直線l轉動時,點R在某一定直線上運動,求該定直線的方程.

 

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年黑龍江省高三上學期期末考試數學文卷 題型:解答題

 

(本小題滿分12分)已知橢圓C:的左、右頂點的坐標分別為,,離心率

(Ⅰ)求橢圓C的方程:

(Ⅱ)設橢圓的兩焦點分別為,,若直線與橢圓交于兩點,證明直線與直線的交點在直線上。

 

查看答案和解析>>

同步練習冊答案