(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),且
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.
(1)
(2)故在x軸上不存在一點(diǎn)C, 使三角形ABC是正三角形
解析試題分析:(1)設(shè)拋物線方程為![]()
得:![]()
設(shè)![]()
則![]()
![]()
![]()
![]()
![]()
拋物線方程是
……………………………………………6分
(2)設(shè)AB的中點(diǎn)是D,則![]()
假設(shè)x軸上存在一點(diǎn)C(x0, 0)
因?yàn)槿切问钦切危?br />所以CD⊥AB
得:![]()
![]()
又![]()
矛盾,故在x軸上不存在一點(diǎn)C, 使三角形ABC是正三角形…………12分
考點(diǎn):本試題考查了拋物線的方程,以及直線與拋物線的位置關(guān)系。
點(diǎn)評(píng):解析幾何的本質(zhì)就是運(yùn)用代數(shù)的方法,結(jié)合坐標(biāo)來分析解析幾何中的圖形的性質(zhì)。因此設(shè)而不求的思想,是解析幾何中解答題的必須步驟,同時(shí)結(jié)合韋達(dá)定理來實(shí)現(xiàn)坐標(biāo)關(guān)系,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:
的焦點(diǎn)坐標(biāo)為
(
),點(diǎn)M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過Q點(diǎn)引直線
與橢圓E交于
兩點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,拋物線
的頂點(diǎn)為坐標(biāo)原點(diǎn)
,焦點(diǎn)
在
軸上,準(zhǔn)線
與圓
相切.![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)若點(diǎn)
在拋物線
上,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l是拋物線的準(zhǔn)線,求證:以AB為直徑的圓與準(zhǔn)線l相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知?jiǎng)訄AP(圓心為點(diǎn)P)過定點(diǎn)A(1,0),且與直線
相切。記動(dòng)點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線l與曲線C相切,且與直線
相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)設(shè)橢圓
的左右焦點(diǎn)分別為
,
,上頂點(diǎn)為
,過點(diǎn)
與
垂直的直線交
軸負(fù)半軸于
點(diǎn),且
是
的中點(diǎn).![]()
(1)求橢圓的離心率;
(2)若過點(diǎn)
的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過右焦點(diǎn)
作斜率為
的直線
與橢圓相交于
兩點(diǎn),在
軸上是否存在點(diǎn)
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓
的焦點(diǎn)為
、
,離心率為
,過點(diǎn)
的直線
交橢圓
于
、
兩點(diǎn).![]()
(1)求橢圓
的方程;
(2)①求直線
的斜率
的取值范圍;
②在直線
的斜率
不斷變化過程中,探究
和
是否總相等?若相等,請(qǐng)給出證明,若不相等,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)
是橢圓
的右頂點(diǎn),若點(diǎn)
在橢圓上,且滿足
.(其中
為坐標(biāo)原點(diǎn))![]()
(1)求橢圓的方程;
(2)若直線
與橢圓交于兩點(diǎn)
,當(dāng)
時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知橢圓
經(jīng)過點(diǎn)
,且其右焦點(diǎn)與拋物線
的焦點(diǎn)F重合.
(Ⅰ)求橢圓
的方程;
(II)直線
經(jīng)過點(diǎn)
與橢圓
相交于A、B兩點(diǎn),與拋物線
相交于C、D兩點(diǎn).求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com