已知首項為
的等比數(shù)列{an}是遞減數(shù)列,其前n項和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若
,數(shù)列{bn}的前n項和Tn,求滿足不等式
≥
的最大n值.
(I)an=a1
=(
)n;(Ⅱ)n的最大值為4.
解析試題分析:(I){an}是一等比數(shù)列,且a1=
.設(shè)等比數(shù)列{an}的公比為q,由S1+a1,S2+a2,S3+a3成等差數(shù)列,可得一個含公比q的方程,解這個方程便得公比q,從而得數(shù)列{an}通項公式.
(Ⅱ)由題設(shè)及(I)可得:bn=anlog2an=-n?(
)n,由等差數(shù)列與等比數(shù)列的積或商構(gòu)成的新數(shù)列,求和時用錯位相消法.用錯位相消法可求得
,變形得
≥
,解這個不等式得n≤4,從而得 n的最大值.
試題解析:(I)設(shè)等比數(shù)列{an}的公比為q,由題知 a1=
,
又∵ S1+a1,S2+a2,S3+a3成等差數(shù)列,
∴ 2(S2+a2)=S1+a1+S3+a3,
變形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3,
∴
q=
+q2,解得q=1或q=
, 4分
又由{an}為遞減數(shù)列,于是q=
,
∴ an=a1
=(
)n. 6分
(Ⅱ)由于bn=anlog2an=-n?(
)n,
∴
,
于是
,
兩式相減得:![]()
![]()
∴
.
∴
≥
,解得n≤4,
∴ n的最大值為4. 12分
考點:1.等差數(shù)列;2.等比數(shù)列的通項公式;3. 錯位相消法求和;4.解不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列
和等比數(shù)列
中,
,
,
是
前
項和.
(1)若
,求實數(shù)
的值;
(2)是否存在正整數(shù)
,使得數(shù)列
的所有項都在數(shù)列
中?若存在,求出所有的
,若不存在,說明理由;
(3)是否存在正實數(shù)
,使得數(shù)列
中至少有三項在數(shù)列
中,但
中的項不都在數(shù)列
中?若存在,求出一個可能的
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正數(shù)列
的前
項和為
,且
.
(1)求數(shù)列
的首項
;
(2)求數(shù)列
的通項公式;
(3)設(shè)
,
是數(shù)列
的前
項和,求使得
對所有
都成立的最小正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列
的前
項和為
,已知
,
.
(1)求
;
(2)若從
中抽取一個公比為
的等比數(shù)列
,其中
,且
,
.
①當(dāng)
取最小值時,求
的通項公式;
②若關(guān)于
的不等式
有解,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正項數(shù)列
的前n項和為
,且
。
(Ⅰ)證明數(shù)列
為等差數(shù)列并求其通項公式;
(2)設(shè)
,數(shù)列
的前n項和為
,證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
由函數(shù)
確定數(shù)列
,
.若函數(shù)
能確定數(shù)列
,
,則稱數(shù)列
是數(shù)列
的“反數(shù)列”.
(1)若函數(shù)
確定數(shù)列
的反數(shù)列為
,求
;
(2)對(1)中的
,不等式
對任意的正整數(shù)
恒成立,求實數(shù)
的取值范圍;
(3)設(shè)
(
為正整數(shù)),若數(shù)列
的反數(shù)列為
,
與
的公共項組成的數(shù)列為
(公共項
為正整數(shù)),求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知直角
的三邊長
,滿足
(1)已知
均為正整數(shù),且
成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列
,且
,求滿足不等式
的所有
的值;
(2)已知
成等比數(shù)列,若數(shù)列
滿足
,證明數(shù)列
中的任意連續(xù)三項為邊長均可以構(gòu)成直角三角形,且
是正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列
的前3項和
,且
、
、
成等比數(shù)列.
(1)求數(shù)列
的通項公式及前n項的和
;
(2)設(shè)
的前n項和,證明:
;
(3)對(2)問中的
,若
對一切
恒成立,求實數(shù)
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com