如圖,在長(zhǎng)方體ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱AB,BC上的點(diǎn),且EB=FB=1.
(1)求異面直線EC1與FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點(diǎn)G,使DG⊥平面D1EF.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐
的底面為直角梯形,
,
,
底面
,且
,
是
的中點(diǎn).
⑴求證:直線
平面
;
⑵⑵若直線
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA
底面ABCD,且SA=2,AD=DC=1![]()
(1)若點(diǎn)E在SD上,且
證明:
平面
;
(2)若三棱錐S-ABC的體積
,求面SAD與面SBC所成二面角的正弦值的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱錐P—ABCD中,AB
AD,CD
AD,PA
底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn)。![]()
(1)求證:BM∥平面PAD;
(2)在側(cè)面PAD內(nèi)找一點(diǎn)N,使MN
平面PBD;
(3)求直線PC與平面PBD所成角的正弦。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐PABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=
,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).![]()
(1)求直線PB與平面POC所成角的余弦值;
(2)求B點(diǎn)到平面PCD的距離;
(3)線段PD上是否存在一點(diǎn)Q,使得二面角QACD的余弦值為
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,
是正方形
所在平面外一點(diǎn),且
,
,若
、
分別是
、
的中點(diǎn).![]()
(1)求證:
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).![]()
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為
,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°. ![]()
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱
中,
,
,
,點(diǎn)
是
的中點(diǎn).![]()
(1)求異面直線
與
所成角的余弦值;
(2)求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com