(本小題滿分13分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
![]()
(Ⅰ)求證:AD⊥平面SBC;
(Ⅱ)試在SB上找一點E,使得平面ABS⊥平面ADE,并證明你的結(jié)論.
見解析。
【解析】
試題分析:(I)通過證明BC⊥AD,通過AD⊥SC,BC∩SC=C,證明AD⊥平面SBC;
(II)過D作DE∥BC,交SB于E,E點即為所求.直接利用直線與平面平行的判定定理即可證明BC∥平面ADE.
(Ⅰ)證明:
BC⊥平面SAC,AD
平面SAC,∴BC⊥AD,
又∵AD⊥SC,
BC
平面SBC, SC
平面SBC,
BC
SC=C,
∴AD⊥平面SBC. …………(6分)
(Ⅱ)過A作AE⊥SB,交SB于E,E點即為所求.
∵AD⊥平面SBC,SB
平面SBC,
∴AD⊥SB.
又AE⊥SB,AE
AD=A
∴SB⊥平面ADE,又SB
平面ABS,由兩個平面垂直的判定定理知:
平面ABS⊥平面ADE…………(13分)考點:本題主要考查了直線與平面垂直,直線與平面平行的判定定理的應(yīng)用,考查空間想象能力,邏輯推理能力.
點評:解決該試題的關(guān)鍵是熟練的運用線面垂直的判定定理和面面垂直的判定定理來證明命題的成立。
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù)![]()
.
(1)求函數(shù)
的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)
在區(qū)間
上的圖象.
(3)設(shè)0<x<
,且方程
有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為
的函數(shù)
是奇函數(shù).
(1)求
的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合
,
,
.
(1)求
(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數(shù)
,數(shù)列{
}的首項
.
(1) 求函數(shù)
的表達(dá)式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列
的前
項和![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com