如圖幾何體中,四邊形
為矩形,
,
,
,
,
為
的中點(diǎn),
為線段
上的一點(diǎn),且
.![]()
(1)證明:
面
;
(2)證明:面![]()
面
;
(3)求三棱錐
的體積
.
(1)見解析;(2)
.
解析試題分析:(1)連接
交
于
點(diǎn),得知
為
的中點(diǎn),連接![]()
根據(jù)點(diǎn)
為
中點(diǎn),利用三角形中位線定理,得出
,進(jìn)一步得到
面
.
(2)首先探究幾何體中的線面、線線垂直關(guān)系,創(chuàng)造建立空間直角坐標(biāo)系的條件,應(yīng)用“向量法”,確定二面角的余弦值.
解答本題的關(guān)鍵是確定“垂直關(guān)系”,這也是難點(diǎn)所在,平時(shí)學(xué)習(xí)中,應(yīng)特別注意轉(zhuǎn)化意識的培養(yǎng),能從“非規(guī)范幾何體”,探索得到建立空間直角坐標(biāo)系的條件.
試題解析:(1)連接
交
于
點(diǎn),則
為
的中點(diǎn),連接![]()
因?yàn)辄c(diǎn)
為
中點(diǎn),所以
為
的中位線,
所以
2分![]()
面
,
面
,
所以
面
4分
(2)取
中點(diǎn)
,
的中點(diǎn)
,連接
,則
,
所以
共面
作
于
,
于
,則
且![]()
![]()
,![]()
和
全等,![]()
和
全等,![]()
![]()
,
為
中點(diǎn),![]()
又
,
,
面![]()
,
面
6分![]()
以
為原點(diǎn),
為
軸建立空間直角坐標(biāo)系如圖所示,則
,
,
,設(shè)
,則
,![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知長方形
中,
,
為
的中點(diǎn).將
沿
折起,使得平面
平面
.![]()
![]()
(1)求證:
;
(2)若點(diǎn)
是線段
上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角
的余弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在圓錐PO中,已知PO=
,☉O的直徑AB=2,C是
的中點(diǎn),D為AC的中點(diǎn).![]()
求證:平面POD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點(diǎn)E,F,G分別是AB,AD,CD的中點(diǎn),計(jì)算:![]()
(1)
·
.
(2)EG的長.
(3)異面直線EG與AC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2
,E是PB上任意一點(diǎn).![]()
(1)求證:AC⊥DE;
(2)已知二面角APBD的余弦值為
,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),且滿足
=
=
=
(如圖(1)),將△AEF沿EF折起到△
EF的位置,使二面角![]()
EF
B成直二面角,連接
B、
P(如圖(2)).![]()
(1)求證:
E⊥平面BEP;
(2)求直線
E與平面
BP所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
是邊長為
的菱形,
,
底面
,
,
為
的中點(diǎn),
為
的中點(diǎn).![]()
(Ⅰ)證明:直線
平面
;
(Ⅱ)求異面直線
與
所成角的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F(xiàn)為底面圓周上一點(diǎn),滿足EF⊥DE.![]()
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com