(12分)雙曲線的離心率等于
,且與橢圓
有公共焦點,
①求此雙曲線的方程.
②若拋物線的焦點到準線的距離等于橢圓的焦距,求該拋物線方程.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分16分)如圖,
是橢圓
的左、右頂點,橢圓
的離心率為
,右準線
的方程為
.![]()
(1)求橢圓方程;
(2)設(shè)
是橢圓
上異于
的一點,直線
交
于點
,以
為直徑的圓記為
.
①若
恰好是橢圓
的上頂點,求
截直線
所得的弦長;
②設(shè)
與直線
交于點
,試證明:直線
與
軸的交點
為定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題13分)曲線
上任意一點M滿足
, 其中F
(-
F
(
拋物線
的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求
,
的標準方程;
(2)請問是否存在直線
滿足條件:①過
的焦點
;②與
交于不同
兩點
,
,且滿足
?若存在,求出直線
的方程;若不
存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
點A、B分別是以雙曲線![]()
的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,
(1)求橢圓C的的方程;
(2)求點P的坐標;
(3)設(shè)M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(Ⅰ)已知雙曲線C與雙曲線
有相同的漸近線,且一條準線為
,求雙曲線C的方程;
(Ⅱ)已知圓截
軸所得弦長為6,圓心在直線
上,并與
軸相切,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標系中,已知點
,過點
作拋物線
的切線,其切點分別為
(其中
)。
⑴ 求
的值;
⑵ 若以點
為圓心的圓與直線
相切,求圓的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)已知拋物線C:
過點A ![]()
(1)求拋物線C 的方程;
(2)直線
過定點
,斜率為
,當
取何值時,直線
與拋物線C只有一個公共點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
標準方程下的橢圓的短軸長為
,焦點
,右準線
與
軸相交于點
,且
,過點
的直線和橢圓相交于點
.
(1)求橢圓的方程和離心率;
(2)若
,求直線
的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com