中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)=x3-3x+m,在區間[0,2]上任取三個不同的數a,b,c,均存在以f(a),f(b),f(c)為邊長的三角形,則m的取值范圍是
m>6
m>6
分析:三角形的邊長為正數,而且任意兩邊之和大于第三邊才能構成三角形,故只需求出函數在區間[0,2]上的最小值與最大值,從而可得不等關系,即可求解.
解答:解:f(x)=x3-3x+m,求導f'(x)=3x2-3由f'(x)=0得到x=1或者x=-1,
又x在[0,2]內,∴函數f(x)在區間(0,1)單調遞減,在區間(1,2)單調遞增,
則f(x)min=f(1)=m-2,f(x)max=f(2)=m+2,f(0)=m.
在[0,2]上任取三個數a,b,c,均存在以f(a),f(b),f(c)為邊的三角形,三個不同的數a,b,c對應的f(a),f(b),f(c)可以有兩個相同.由三角形兩邊之和大于第三邊,可知最小邊長的二倍必須大于最大邊長.
由題意知,f(1)=-2+m>0…(1),
f(1)+f(1)>f(0),得到-4+2m>m…(2),
f(1)+f(1)>f(2),得到-4+2m>2+m…(3),
由(1)(2)(3)得到m>6為所求.
故答案為:m>6.
點評:本題以函數為載體,考查構成三角形的條件,解題的關鍵是求出函數在區間[0,2]上的最小值與最大值
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數f(x)的單調遞減區間為(
13
,1),求函數f(x)的解析式;
(2)若f(x)的導函數為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當a=-2時,求f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+3x2+a(a為常數) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習冊答案