中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(3,4),
b
=(sinα,cosα)
,且 
a
b
,則tanα=( 。
分析:根據題設條件,由 
a
b
,知
3
sinα
=
4
cosα
,由此能求出tanα.
解答:解:∵向量
a
=(3,4),
b
=(sinα,cosα)

且 
a
b
,
3
sinα
=
4
cosα
,
∴tanα=
sinα
cosα
=
3
4

故選A.
點評:本題考查平面向量共線的性質和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(-3,4)
,向量
b
滿足
b
a
,且|
b
|=2
,則
b
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(-3,4)
,向量
b
a
方向相反,且
b
a
,|
b
|=1
,則實數λ=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,當
b
=(
3
25
,
4
25
)
時取等號,
所以x2+y2的最小值為
1
25

(2)已知實數x,y,z滿足2x+3y+z=1,則x2+y2+z2的最小值為
1
14
1
14

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(3,4,-3),
b
=(5,-3,1)
,則它們的夾角是( 。
A、0°B、45°
C、90°D、135°

查看答案和解析>>

同步練習冊答案