中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=aln x+x2(a>0),若對定義域內的任意x,f′(x)≥2恒成立,則a的取值范圍是________.
[1,+∞)
由題意得f′(x)=+x≥2,當且僅當=x,
即x=時取等號,
∵f′(x)≥2,∴只要f′(x)min≥2即可,
即2≥2,解得a≥1.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當時,求的最小值;
(2)在區間(1,2)內任取兩個實數p,q,且p≠q,若不等式>1恒成立,求實數a的取值范圍;
(3)求證:(其中)。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.其中.
(1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(2)若f(x)≤g(x)-1對任意x>0恒成立,求實數的值;
(3)當<0時,對于函數h(x)=f(x)-g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為,若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知a>0,函數f(x)=ax2-ln x.
(1)求f(x)的單調區間;
(2)當a=時,證明:方程f(x)=f 在區間(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=lnx-ax,g(x)=ex-ax,其中a為實數.
(1)若f(x)在(1,+∞)上是單調減函數,且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(-1,+∞)上是單調增函數,試求f(x)的零點個數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數的圖像在點處的切線斜率為10.
(1)求實數的值;
(2)判斷方程根的個數,并證明你的結論;
(21)探究: 是否存在這樣的點,使得曲線在該點附近的左、右兩部分分別位于曲線在該點處切線的兩側? 若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數f(x)=g(x)+x2,曲線y=g(x)在點(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(1,f(1))處的切線的斜率為(  )
A.2B.-C.4D.-

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知f(x)是定義域為R的奇函數,f(-4)=-1,f(x)的導函數f′(x)的圖像如圖X18-1所示.若兩正數a,b滿足f(a+2b)<1,則的取值范圍是(  )
A.B.(-∞,-1)C.(-1,0)D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,則的解集為________.

查看答案和解析>>

同步練習冊答案