中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知a,b是正實數,設函數f(x)=xlnx,g(x)=-a+xlnb.
(Ⅰ)設h(x)=f(x)-g(x),求h(x)的單調區間;
(Ⅱ)若存在x0,使x0∈[
a+b
4
,
3a+b
5
]且f(x0)≤g(x0)成立,求
b
a
的取值范圍.
分析:(I)根據已知求出h(x)=f(x)-g(x)的解析式,求出其導函數,分別求出導函數為正,為負時x的取值范圍,進而可得h(x)的單調區間;
(Ⅱ)根據區間的定義可得
a+b
4
3a+b
5
,由f(x0)≤g(x0),結合(I)中函數的單調性,分類討論,最后綜合討論結果,可得
b
a
的取值范圍.
解答:解:(1)∵h(x)=f(x)-g(x)=xlnx+a-xlnb
∴h′(x)=lnx+1-lnb
由h′(x)>0得x>
b
e
,
∴h(x)在(0,
b
e
)上單調遞減,(
b
e
,+∞)上單調遞增.…(4分)
(2)由
a+b
4
3a+b
5
b
a
<7                      …(5分)
(i)當
a+b
4
b
c
3a+b
5
,即
e
4-e
b
a
3e
5-e
時,
h(x)min=h(
b
e
)=-
b
e
+a
由-
b
e
+a≤0得
b
a
≥e,
∴e≤
b
a
3e
5-e
                …(7分)
(ii)當
b
c
a+b
4
時,a>
4-e
e
b

∴h(x)在[
a+b
4
,
3a+b
5
]上單調遞增.
h(x)min=h(
a+b
4
)=
a+b
4
(ln
a+b
4
-lnb)+a≥
a+b
4
(ln
b
e
lnb)+a=
3a-b
4
3
4-e
e
b-b
4
=
3-e
e
b>0
∴不成立                                         …(9分)
(iii)當
b
e
3a+b
5
,即
b
a
3e
5-e
時,a<
5-e
3e
b
h(x)在[
a+b
4
,
3a+b
5
]上單調遞減.
h(x)min=h(
3a+b
5
)=
3a+b
5
(ln
3a+b
5
-lnb)+a<
3a+b
5
(ln
b
e
lnb)+a=
2a-b
5
2•
5-e
3e
b-b
5
=
2-e
3e
b
<0
∴當
b
a
3e
5-e
時恒成立                           …(11分)
綜上所述,e≤
b
a
<7                            …(12分)
點評:本題考查的知識點是利用導數研究函數的單調性,函數恒成立問題,熟練掌握導數法求函數的單調性和最值的方法和步驟是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a,b是正實數,求證:
a
b
+
b
a
a
+
b

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b是正實數,函數f(x)=-
1
3
x3+ax2+bx在x∈[-1,2]上單調遞增,則a+b的取值范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a、b是正實數,則下列不等式中不成立的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a、b是正實數,證明
a
+
b
≤2
a+b
2

查看答案和解析>>

同步練習冊答案