設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足
+
+…+
=1-
,n∈N* ,求{bn}的前n項和Tn.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列
中,已知
.
(1)求數(shù)列
的通項公式;
(2)若
分別為等差數(shù)列
的第3項和第5項,試求數(shù)列
的通項公式及前
項和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列![]()
中,其前
項和為
,滿足
.
(1)求數(shù)列
的通項公式;
(2)設(shè)
(
為正整數(shù)),求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足a2·a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)由bn=
(c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-
時,數(shù)列{bn}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項和為Sn,并且滿足a1=2,nan+1=Sn+n(n+1).
(1)求{an}的通項公式;
(2)令Tn=
Sn,是否存在正整數(shù)m,對一切正整數(shù)n,總有Tn≤Tm?若存在,求m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn是a和an的等差中項.
(1)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)證明
<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是等差數(shù)列,且a2=-1,a5=5.
(1)求{an}的通項an.
(2)求{an}前n項和Sn的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com