中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f
x
=ln|x|
x≠0
,函數g
x
=
1
f′
x
+af′
x
x≠0

(I)當x≠0時,求函數y=g
x
的表達式;
(Ⅱ)若a>0,且函數y=g
x
0,+∞
上的最小值是2,求a的值;
(Ⅲ)對于(Ⅱ)中所求的a值,若函數h(x)=
1
3
x3-
b+1
2a
x2+bx,x∈R
,恰有三個零點,求b的取值范圍.
(Ⅰ)∵f
x
=ln|x|

∴當x>0時,f
x
=lnx
; 當x<0時,f
x
=ln
-x

∴當x>0時,f′
x
=
1
x
; 當x<0時,f′
x
=
1
-x
-1
=
1
x

∴當x≠0時,函數y=g
x
=x+
a
x

(Ⅱ)∵由(1)知當x>0時,g
x
=x+
a
x

∴當a>0,x>0時,g
x
≥2
a
當且僅當x=
a
時取等號.
2
a
=2
,得a=1,
(Ⅲ)h′(x)=x2-(b+1)x+b=(x-1)(x-b)
令h′(x)=0,得x=1或x=b.
(1)若b>1,則當0<x<1時,h′(x)>0,當1<x<b,時h′(x)<0,當x>b時,h′(x)>0;
(2)若b<1,且b≠0,則當0<x<b時,h′(x)>0,當b<x<1時,h′(x)<0,當x>1時,h′(x)>0.
所以函數h(x)有三個零點的充要條件為
f(1)>0
f(b)<0
f(1)<0
f(b)>0
解得b<
1
3
或b>3.
綜合:b∈(-∞,0)∪(0,
1
3
)∪(3,+∞)

h(x)=
1
3
x3-
b+1
2
x2+bx=
1
6
x[2x2-3(b+1)x+6b]

所以,方程2x2-3(b+1)x+6b=0,有兩個不等實根,且不含零根.
9(b+1)2-48b>0
b≠0
,解得:b∈(-∞,0)∪(0,
1
3
)∪(3,+∞)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f
x
=ln|x|
x≠0
,函數g
x
=
1
f′
x
+af′
x
x≠0

(I)當x≠0時,求函數y=g
x
的表達式;
(Ⅱ)若a>0,且函數y=g
x
0,+∞
上的最小值是2,求a的值;
(Ⅲ)對于(Ⅱ)中所求的a值,若函數h(x)=
1
3
x3-
b+1
2a
x2+bx,x∈R
,恰有三個零點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:天津市天津一中2012屆高三4月月考數學理科試題 題型:044

已知函數f(x)=x/4+ln(x-2)/(x-4).

(1)求函數f)x)的定義域和極值;

(2)若函數(fx)在區間[a2-5a,8-3a]上為增函數,求實數a的取值范圍;

(3)函數f(x)的圖象是否為中心對稱圖形?若是請指出對稱中心,并證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年天津市高三4月月考理科數學試卷(解析版) 題型:解答題

已知函數f(x)= x/4+ln(x-2)/(x-4),(1)求函數f)x)的定義域和極值;(2)若函數(fx)在區間[a2-5a,8-3a]上為增函數,求實數a的取值范圍;(3)函數f(x)的圖象是否為中心對稱圖形?若是請指出對稱中心,并證明;若不是,請說明理由.

 

查看答案和解析>>

同步練習冊答案