如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,
. ![]()
(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角
的大小.
科目:高中數學 來源: 題型:解答題
已知直角梯形
中,
是邊長為2的等邊三角形,
.沿
將
折起,使
至
處,且
;然后再將
沿
折起,使
至
處,且面
面
,
和
在面
的同側.![]()
![]()
(Ⅰ) 求證:
平面
;
(Ⅱ) 求平面
與平面
所構成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在如圖所示的幾何體中,
是邊長為2的正三角形,
平面ABC,平面
平面ABC,BD=CD,且
.![]()
(1)若AE=2,求證:AC∥平面BDE;
(2)若二面角A—DE—B為60°.求AE的長。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角
,如圖二,在二面角
中.![]()
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知在四棱錐
中,底面
是邊長為2的正方形,側棱
平面
,且
,
為底面對角線的交點,
分別為棱
的中點![]()
(1)求證:
//平面
;
(2)求證:
平面
;
(3)求點
到平面
的距離。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F為ED邊的中點,CD=BD=2AC=2![]()
(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com