(本小題滿分15分)
如圖,四邊形
為矩形,點(diǎn)
的坐標(biāo)分別為
、
,點(diǎn)
在
上,坐標(biāo)為
,橢圓
分別以
、
為長(zhǎng)、短半軸,
是橢圓在矩形內(nèi)部的橢圓。阎本
與橢圓弧相切,且與
相交于點(diǎn)
.
(Ⅰ)當(dāng)
時(shí),求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)圓
在矩形內(nèi)部,且與
和線段EA都相切,若直線
將矩形
分成面積相等的兩部分,求圓M面積的最大值.
解:(1)解:設(shè)橢圓的方程為
. k*s5*u
由
消去y得
. …………………3分
由于直線l與橢圓相切,
,
化簡(jiǎn)得
, ①
當(dāng)
時(shí),
,
則橢圓
的標(biāo)準(zhǔn)方程為
. ………………………6分
(2)由題意知
,
,
,
于是
的中點(diǎn)為
.
因?yàn)?sub>
將矩形
分成面積相等的兩部分,所以
過(guò)點(diǎn)
,
即
,亦即
. ②
由①②解得
,故直線
的方程為
………………9分
∴
.
因?yàn)閳A
與線段
相切,所以可設(shè)其方程為
.
因?yàn)閳A
在矩形及其內(nèi)部,所以
④
圓
與
相切,且圓
在
上方,所以
,即
.
代入④得
即
所以圓
面積最大時(shí),
,這時(shí),圓
面積的最大值為
.………15分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(ⅰ)若不等式
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(ⅱ)若
是兩個(gè)不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知
、
分別為橢圓
:
的
上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),
點(diǎn)
是
與
在第二象限的交點(diǎn),且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)P(1,3)和圓
:
,過(guò)點(diǎn)P的動(dòng)直線
與圓
相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:
,
(
且
)。求證:點(diǎn)Q總在某定直線上。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓
的左、右焦點(diǎn)分別為
、
,過(guò)
的直線
與橢圓相交于A、B兩點(diǎn)。
(Ⅰ)若
,且
,求橢圓的離心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說(shuō)明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com