(本題滿(mǎn)分16分)已知圓
過(guò)點(diǎn)
且與圓
:![]()
關(guān)于直線(xiàn)
對(duì)稱(chēng),作斜率為
的直線(xiàn)
與圓
交于
兩點(diǎn),且點(diǎn)
在直線(xiàn)
的左上方。
(1)求圓C的方程。
(2)證明:△
的內(nèi)切圓的圓心在定直線(xiàn)
上。
(3)若∠
,求△
的面積。
解:(1)設(shè)圓心![]()
,則
, 解得
……………………2分
![]()
, ∴圓C的方程為
………………………………………4分
(2)設(shè)直線(xiàn)
的方程為:
,
,
,
由
可得:
,![]()
![]()
=![]()
=![]()
從而
,因此, ∠
的平分線(xiàn)為垂直于
軸的直線(xiàn),又
,所以△
的內(nèi)切圓的圓心在直線(xiàn)
上。………………………………………………10分
(3)若∠
,結(jié)合(2)可知:
,
……………………11分
直線(xiàn)
的方程為:
,圓心
到直線(xiàn)
的距離![]()
…………………………………13分
同理可得:
…………………………………………………………15分
………………………………………………16分。
注:(3)解法二:
∥
,
,又
,
,![]()
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿(mǎn)分16分)
已知函數(shù)
,且對(duì)任意
,有
.
(1)求
;
(2)已知
在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)
數(shù)
的取值范圍.
(3)討論函數(shù)
的零點(diǎn)個(gè)數(shù)?(提示
:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三10月階段性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分16分)已知函數(shù)
為實(shí)常數(shù)).
(I)當(dāng)
時(shí),求函數(shù)
在
上的最小值;
(Ⅱ)若方程
在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:![]()
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分16分) 已知橢圓
:
的離心率為
,
分別為橢圓
的左、右焦點(diǎn),若橢圓
的焦距為2.
⑴求橢圓
的方程;
⑵設(shè)
為橢圓上任意一點(diǎn),以
為圓心,
為半徑作圓
,當(dāng)圓
與橢圓的右準(zhǔn)線(xiàn)
有公共點(diǎn)時(shí),求△
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分16分)已知函數(shù)
是定義在
上的偶函數(shù),且當(dāng)
時(shí),
。
(Ⅰ)求
及
的值;
(Ⅱ)求函數(shù)
在
上的解析式;
(Ⅲ)若關(guān)于
的方程
有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿(mǎn)分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com