中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知圓C:(x-1)2+(y-2)2=5,直線l:x-y=0,則C關于l的對稱圓C′的方程為(  )
分析:求出已知圓的圓心和半徑,設出對稱圓的圓心C′( a,b),由 CC′⊥l,且CC′的中點在直線l上,可得
b-2
a-1
×1=-1,且
a+1
2
-
b+2
2
=0,解得 a、b 的值,即可得到對稱圓的方程.
解答:解:∵圓C:(x-1)2+(y-2)2=5,故圓心C(1,2),半徑等于
5

設C′( a,b),則有 CC′⊥l,且CC′的中點在直線l上.
故有
b-2
a-1
×1=-1,且
a+1
2
-
b+2
2
=0,解得 a=2,b=1.
又對稱圓和已知的圓半徑相同,故對稱圓的方程為(x-2)2+(y-1)2=5,
故選B.
點評:本題主要考查求一個點關于某直線的對稱點的坐標的方法,利用了垂直、和中點在對稱軸上這兩個條件,求出對稱圓的
圓心坐標,是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓C:(x+1)2+y2=25及點A(1,0),Q為圓上一點,AQ的垂直平分線交CQ于M,則點M的軌跡方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:(x-1)2+y2=9內有一點P(2,2),過點P作直線l交圓C于A、B
(1)當弦AB被點P平分時,寫出直線l的方程;
(2)當直線l的傾斜角為45°時,求弦AB的長.
(3)設圓C與x軸交于M、N兩點,有一動點Q使∠MQN=45°.試求動點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:(x-1)2+y2=9內有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經過圓心C時,求直線l的方程;
(2)當弦AB的長為4
2
時,寫出直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:(x-1)2+(y+1)2=1,那么圓心C到坐標原點O的距離是
2
2

查看答案和解析>>

同步練習冊答案