中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f (x)=
a
b
,其中向量
a
=(
3
cosx,sinx),
b
=(cosx,cosx).
①若函數y=sin2x按向量
c
=(p,q) (|p|<
π
2
)平移后得到函數y=f (x)的圖象,求實數p,q的值.
②若f (x)=1+
3
2
,x∈[
π
2
π
2
],求sinx.
分析:①先求出函數f (x)=
a
b
的表達式,利用二倍角公式和兩角和的正弦函數,化簡為f(x)=sin(2x+
2
3
π)+
3
2

根據平移求出向量
c
=(p,q),實數p,q的值.
②利用f (x)=1+
3
2
,得到sin(2x+
2
3
x
)=1,然后求出x的值,再求sinx.
解答:解:①f(x)=
3
cos2x-sinxcosx=
3
2
(1+cos2x)-
1
2
sin2x=-
1
2
sin2x+
3
2
cos2x+
3
2

=sin(2x+
2
3
π)+
3
2

C
=(-
π
3
3
2
)
,∴p=-
π
3
,q=
3
2
(6分)
②sin(2x+
2
3
π
)+
3
2
=1+
3
2

∴sin(2x+
2
3
x
)=1
∴2x+
2
3
π
=
π
2
+2kπ  (K∈z)

∴2x=-
π
6
+2kπ
,x=-
π
12
+kπ
(k∈Z)
∵x∈[-
π
2
π
2
],∴x=-
π
12
(10分)
∴sin(-
π
12
)=-sin
π
12
=-
6
-
2
4
(12分)
點評:本題是基礎題,考查三角函數的化簡,二倍角公式,兩角和的正弦函數公式的應用,三角函數的圖象的平移,簡單三角方程的解法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=A+Bsinx,若B<0時,f(x)的最大值是
3
2
,最小值是-
1
2
,則A=
 
,B=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函數f(x)的最小正周期和在[0,π]上的單調遞增區間;
(2)當x∈[0,
π
6
]
時,f(x)的最大值為4,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a+bcosx+csinx的圖象過點(0,1)和點(
π
2
,1)
,當x∈[0,
π
2
]
時,|f(x)|<2,則實數a的取值范圍是(  )
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b與c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),設函數f(x)=
a
b
(x∈R)的圖象關于直線x=
π
3
對稱,其中常數ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)將函數f(x)的圖象向左平移
π
12
個單位,得到函數g(x)的圖象,用五點法作出函數g(x)在區間[-
π
2
π
2
]的圖象.

查看答案和解析>>

同步練習冊答案